Top Qs
Línea de tiempo
Chat
Contexto

Poliedro uniforme

poliedro con polígonos regulares como caras y transitividad entre sus vértices De Wikipedia, la enciclopedia libre

Poliedro uniforme
Remove ads

Un poliedro uniforme es una figura tridimensional que tiene polígonos regulares como caras y es isogonal (es decir, presenta una isometría que permite hacer corresponder el conjunto de sus vértices entre sí mediante relaciones de simetría). De ello se deduce que todos sus vértices son congruentes.[1]

Thumb
Los cinco sólidos platónicos

Los poliedros uniformes pueden ser regulares (si también son transitivos con respecto a caras y aristas), cuasirregulares (si son transitivos con respecto a sus aristas pero no con respecto a sus caras) o semirregulares (si no son transitivos de aristas ni de caras). No es necesario que la configuración de caras y de vértices sea convexa, por lo que muchos de los poliedros uniformes también son poliedros estrellados.

Hay dos clases infinitas de poliedros uniformes, junto con otros 75 poliedros:[2]

Por tanto, 5 + 13 + 4 + 53 = 75.

También hay muchos poliedros uniformes degenerados con pares de bordes que coinciden, incluido uno encontrado por John Skilling denominado gran dirrombidodecaedro birromo (figura de Skilling).

Los poliedros conjugados de los poliedros uniformes son figuras isoedrales (es decir, isoédricas), presentan figuras de vértice regulares, y generalmente se clasifican en paralelo con su poliedro dual (uniforme). El dual de un poliedro regular es regular, mientras que el dual de un sólido de Arquímedes es un sólido de Catalan.

El concepto de poliedro uniforme es un caso especial del concepto de politopo uniforme, que también se aplica a las formas en el espacio de dimensiones superiores e inferiores.

Remove ads

Definición

Resumir
Contexto
El pecado original en la teoría de los poliedros se remonta a Euclides, y a través de Kepler, Poinsot, Cauchy y muchos otros continúa afligiendo a todo el trabajo sobre este tema (incluido el del presente autor). Surge del hecho de que el uso tradicional del término "poliedros regulares" era, y es, contrario a la sintaxis y a la lógica: las palabras parecen implicar que estamos tratando, entre los objetos que llamamos "poliedros", con aquellos especiales, los que merecen ser llamados "regulares". Pero en cada etapa —Euclides, Kepler, Poinsot, Hess, Brückner, …— los distintos autores no lograron definir cuáles son los "poliedros" entre los que encuentran los "regulares". Branko Grünbaum (1994)[3]

Coxeter, Longuet-Higgins y Miller (1954) definen los poliedros uniformes como poliedros con caras regulares y transitividad entre sus vértices (es decir, con propiedades de isoedría). A su vez, definen un poliedro como un conjunto finito de polígonos, de modo que cada lado de un polígono es un lado de otro polígono, de modo que ningún subconjunto propio no vacío de los polígonos tiene la misma propiedad. Por polígono se refieren implícitamente a un polígono en un espacio euclídeo tridimensional; se permite que no sean convexos y que sus aristas se crucen entre sí.[4]

Hay algunas generalizaciones del concepto de poliedro uniforme. Si se descarta el supuesto de conectividad, se obtienen sólidos compuestos uniformes, que se pueden considerar como la unión de poliedros (como por ejemplo, el compuesto de 5 cubos). Si se deja de lado la condición de que la configuración del poliedro no sea degenerada, se obtienen los llamados poliedros uniformes degenerados, que requieren una definición más general del concepto de poliedro.Grünbaum (1994) dio una definición bastante complicada de poliedro, mientras que McMullen y Schulte (2002) dio una definición más simple y general: en su terminología, un poliedro es un politopo abstracto bidimensional con una realización tridimensional no degenerada. Aquí, politopo abstracto es el conjunto de sus caras que satisfacen varias condiciones, una realización es una función desde sus vértices a algún espacio, y la realización se llama no degenerada si dos caras distintas del politopo abstracto tienen realizaciones distintas.

Algunas de las formas en que pueden dar lugar a poliedros degenerados son las siguientes:

  • Caras ocultas. Algunos poliedros tienen caras que están ocultas, en el sentido de que ningún punto de su interior puede verse desde el exterior. Por lo general, estos no se cuentan como poliedros uniformes.
  • Compuestos degenerados. Algunos poliedros tienen múltiples aristas y sus caras son las caras de dos o más poliedros, aunque estos no son compuestos en el sentido anterior, ya que los poliedros comparten aristas.
  • Recubrimientos duplicados. Existen algunos poliedros no orientables que tienen recubrimientos duplicados que satisfacen la definición de un poliedro uniforme. Hay recubrimientos dobles con caras, aristas y vértices duplicados.Por lo general, no se cuentan como poliedros uniformes.
  • Caras dobles. Hay varios poliedros con caras dobles producidos por la construcción de Wythoff. La mayoría de los autores no permiten la presencia de caras dobles y las eliminan como parte de la construcción.
  • Aristas dobles. La figura de Skilling tiene la propiedad de que posee aristas dobles (como en los poliedros uniformes degenerados) pero sus caras no se pueden considerar como la unión de dos poliedros uniformes.
Remove ads

Historia

Poliedros convexos regulares

Poliedros convexos uniformes no regulares

Thumb
Thumb
Los sólidos arquimedianos, por Johannes Kepler

Poliedros estrellados regulares

Otros 53 poliedros estrellados no regulares

  • De los 53 restantes, Edmund Hess (1878) descubrió dos, Albert Badoureau (1881) descubrió 36 más y Pitsch (1881) descubrió de forma independiente 18 más, de los cuales 3 no habían sido descubiertos previamente. Conjuntamente, estos tres autores identificaron 41 poliedros.
  • El geómetra H.S.M. Coxeter descubrió los doce restantes en colaboración con J. C. P. Miller (1930-1932) pero no los publicó. M.S. Longuet-Higgins y H.C. Longuet-Higgins descubrieron de forma independiente once de estos sólidos. Lesavre y Mercier redescubrieron cinco de ellos en 1947.
  • Coxeter, Longuet-Higgins y Miller (1954) publicó la lista de poliedros uniformes.
  • Sopov (1970) demostró su conjetura de que la lista estaba completa.
  • En 1974, Magnus Wenninger publicó su libro Polyhedron models, que enumera los 75 poliedros uniformes no prismáticos, con muchos nombres inéditos que les dio Norman Johnson.
  • Skilling (1975) demostró de forma independiente la integridad del conjunto, y demostró que si la definición de poliedro uniforme se relaja para permitir que las aristas coincidan, solo hay una posibilidad adicional.
  • En 1987, Edmond Bonan dibujó todos los poliedros uniformes y sus duales en 3D utilizando un programa compilado en Turbo Pascal denominado Polyca: muchos de ellos se mostraron durante el Congreso de la Unión Estereoscópica Internacional celebrado en el Congress Theatre, de Eastbourne, United Reino.[7]
  • En 1993, Zvi Har'El produjo una construcción caleidoscópica completa de los poliedros uniformes y duales con un programa de computadora llamado Kaleido, resumido en un documento titulado Solución uniforme para poliedros uniformes, numerando las figuras del 1 al 80.[8]
  • También en 1993, R. Mäder portó esta solución de Kaleido a Mathematica con un sistema de indexación ligeramente diferente.[9]
  • En 2002 Peter W. Messer descubrió un conjunto mínimo de expresiones de forma cerrada para determinar las principales cantidades combinatorias y métricas de cualquier poliedro uniforme (y de su dual) a partir únicamente de su símbolo de Wythoff.[10][11]
Remove ads

Poliedros estrellados uniformes

Thumb
El gran dirhombicosidodecaedro, el único poliedro uniforme no wythoffiano

Las 57 formas no prismáticas no convexas, con la excepción del gran dirhombicosidodecaedro, son compiladas por construcciones de Wythoff dentro de los triángulos de Schwarz.

Construcción de formas convexas de Wythoff

Resumir
Contexto
Thumb
Thumb

Los poliedros uniformes convexos se pueden nombrar mediante operaciones de construcción de Wythoff sobre una forma regular. Para más detalle, más adelante se dan los poliedros uniformes convexos por su construcción de Wythoff dentro de cada grupo de simetría.

Dentro de la construcción de Wythoff, hay repeticiones creadas por formas de simetría más baja. El cubo es un poliedro regular y un prisma cuadrado. El octaedro es un poliedro regular y un antiprisma triangular. El octaedro también es un tetraedro rectificado. Muchos poliedros se repiten a partir de diferentes fuentes de construcción y están coloreados de manera diferente.

La construcción de Wythoff se aplica igualmente a poliedros uniformes y teselados uniformes en la superficie de una esfera, por lo que se dan imágenes de ambos. Los mosaicos esféricos incluyen el conjunto del hosoedro y del diedro, que son poliedros degenerados.

Estos grupos de simetría se forman a partir de los grupos de puntos en tres dimensiones reflexivos, cada uno representado por un triángulo fundamental (p q r), donde p > 1, q > 1, r > 1 y 1/p + 1/q + 1/r < 1.

Las formas no reflexivas restantes se construyen mediante operaciones de alternación aplicadas a los poliedros con un número par de lados.

Junto con los prismas y su grupo diedral, el proceso de construcción esférico de Wythoff agrega dos clases regulares que se degeneran como poliedros: el diedro y el hosoedro, el primero con solo dos caras, y el segundo con solo dos vértices. El truncamiento del hosoedro regular crea los prismas.

Debajo de los poliedros uniformes convexos se indexan de 1 a 18 las formas no prismáticas, que se presentan en las tablas por forma de simetría.

Para el conjunto infinito de formas prismáticas, están indexadas en cuatro familias:

  1. Hosoedros H2... (solo como teselados esféricos)
  2. Diedros D2... (solo como teselados esféricos)
  3. Prismas P3... (hosoedros truncados)
  4. Antiprismas A3... (prismas achatados o romos)

Tablas resumen

Más información , ...

Muestra de simetrías diédricas:

(La esfera no se corta, solo se corta el teselado). (En una esfera, una arista es el arco de un círculo máximo, el camino más corto, entre sus dos vértices. Por lo tanto, un digóno cuyos vértices no están opuestos polarmente es plano: parece una arista)

Más información , ...

Simetría tetraédrica (3 3 2) Td

La simetría tetraédrica de la esfera genera 5 poliedros uniformes y una sexta forma mediante una operación de suavizado (poliedro romo).

La simetría tetraédrica está representada por un triángulo fundamental con un vértice con dos simetrías de reflexión y dos vértices con tres simetrías de reflexión, representado por el símbolo (3 3 2). También puede estar representado por el grupo de Coxeter A2 o [3,3], así como por el diagrama de Coxeter-Dynkin: .

Hay 24 triángulos, visibles en las caras del tetraquishexaedro y en los triángulos de la esfera coloreados alternativamente:

Thumb ThumbThumb
Más información #, Nombre ...

Simetría octaédrica (4 3 2) Oh

La simetría octaédrica de la esfera genera 7 poliedros uniformes y 7 más por alternancia. Seis de estas formas se repiten de la tabla de simetría tetraédrica anterior.

La simetría octaédrica está representada por un triángulo fundamental (4 3 2) contando las reflexiones en cada vértice. También se puede representar con el grupo de Coxeter B2 o [4,3], así como con el diagrama de Coxeter-Dynkin: .

Hay 48 triángulos, visibles en las caras del hexaquisoctaedro y en los triángulos de colores alternados en una esfera:

Thumb ThumbThumb
Más información #, Nombre ...

Simetría icosaédrica (5 3 2) Ih

La simetría icosaédrica de la esfera genera 7 poliedros uniformes y 1 más por alternancia. Solo uno se repite de la tabla de simetría tetraédrica y octaédrica anterior.

La simetría icosaédrica está representada por un triángulo fundamental (5 3 2) contando las reflexiones en cada vértice. También se puede representar mediante el grupo de Coxeter G2 o [5,3], así como por un diagrama de Coxeter-Dynkin: .

Hay 120 triángulos, visibles en las caras del hexaquisicosaedro y en los triángulos de colores alternados en una esfera:

Thumb ThumbThumb
Más información #, Nombre ...

Simetría diédrica Dph: (p 2 2) prismática [p, 2] y familia I2(p)

El grupo diedral de la esfera genera dos conjuntos infinitos de poliedros uniformes (prismas y antiprismas,) y dos conjuntos infinitos más de poliedros degenerados, el hosoedro y el diedro que existen como teselas en la esfera.

La simetría diédrica o diedral está representada por un triángulo fundamental (p 2 2) contando las reflexiones en cada vértice. También puede estar representado por el grupo de Coxeter I2 (p) o [n, 2], así como por un diagrama de Coxeter-Dynkin prismático: .

A continuación se muestran las primeras cinco simetrías diédricas: D2 ... D6. La simetría diedral Dp tiene orden 4n, representa las caras de una bipirámide, y en la esfera como una línea del ecuador y n líneas de longitud igualmente espaciadas.

(2 2 2) Simetría diédrica

Hay 8 triángulos fundamentales, visibles en las caras del octaedro y en los triángulos de colores alternados en una esfera:

Thumb Thumb
Más información #, Nombre ...

Simetría diédrica (3 2 2) D3h

Hay 12 triángulos fundamentales, visibles en las caras de la bipirámide hexagonal y como triángulos de colores alternados en una esfera:

Thumb Thumb
Más información #, Nombre ...

Simetría diédrica (4 2 2) D4h

Hay 16 triángulos fundamentales, visibles en las caras de la bipirámide octogonal y en los triángulos de colores alternados en una esfera:

Thumb
Más información #, Nombre ...

Simetría diédrica (5 2 2) D5h

Hay 20 triángulos fundamentales, visibles en las caras de una bipirámide decagonal y en los triángulos de colores alternados en una esfera:

Más información #, Nombre ...

Simetría diédrica (6 2 2) D6h

Hay 24 triángulos fundamentales, visibles en las caras de una bipirámide dodecagonal y en los triángulos de colores alternados de una esfera.

Más información #, Nombre ...
Remove ads

Operadores de construcción de Wythoff

Más información Operación, Símbolo ...
Más información Operación, Símbolo ...
Remove ads

Véase también

Remove ads

Referencias

Bibliografía

Enlaces externos

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads