상위 질문
타임라인
채팅
관점

초등각 장론

위키백과, 무료 백과사전

Remove ads

양자장론에서 초등각 장론(超等角場論, 영어: superconformal field theory, 약자 SCFT)은 등각 대칭초대칭을 동시에 갖는 양자장론이다.

4차원 초등각 장론

요약
관점

4차원 초등각 장론은 4차원 초등각 대칭을 따르는 양자장론이며, 4차원 초대칭 양자장론의 재규격화군흐름의 적외선 극한으로 얻어진다.

4차원 초등각 대수

4차원에서, 초전하의 수가 개인 초등각 대수는 이다.[1] 그 보손 성분은

이다. 다만, 일 경우 U(1) R대칭이 깨져,

가 된다.[1]

4차원 초등각 대수의 생성원 및 이들의 보손 대칭 표현은 다음과 같다.

자세한 정보 , ...

, , , 사이의 리 괄호등각 대칭과 같으며. 나머지 리 괄호들은 다음과 같다.[2]

여기서

이다.

표현

4차원 초등각 장론에서의 1차 등각장은 R대칭 표현과 등각 무게 및 로런츠 표현에 의하여 결정된다. 유니터리 초등각 장론의 경우 이 값들에 대하여 유니터리 하한(영어: unitarity bound)이라는 부등식들이 존재한다.[3]

Remove ads

3차원 초등각 장론

3차원 초등각 대수는 이며, 그 보손 부분군은

이다. 즉, R대칭군은 이다.[4]

Remove ads

2차원 초등각 장론

2차원 초등각 대수는 비라소로 대수를 포함하므로 무한 차원의 리 초대수이며, 이에 따라 2차원 초등각 장론들은 여러 특수한 성질들을 갖는다.

성질

4차원 초등각 장론의 R전하 및 등각 무게는 -최대화(영어: -maximization)라는 방법으로 계산할 수 있다.[5][6] 즉, 이들 값들은 항상 대수적 수이다.

초대칭 양-밀스 이론은 4차원 초등각 장론이며, 이는 D3-막의 세계부피 이론이다. 6차원 (2,0) 초등각 장론리만 곡면축소화하면, 𝒮류 이론(영어: theories of class 𝒮)이라는 초등각 장론들을 얻는다.[7] 4차원 초등각 장론에 대하여서는 자이베르그 이중성이라는 이중성이 존재한다.

3차원에서는 베스-추미노 모형재규격화군 흐름의 고정점을 만나, 초등각 장론을 이룬다.[8] 그러나 4차원에서는 베스-추미노 모형의 적외선 극한은 자유 이론이다.

6차원에서는 6차원 (2,0) 초등각 장론이 존재한다. 이는 M5-막의 세계부피 이론이다.

Remove ads

같이 보기

각주

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads