Najlepsze pytania
Chronologia
Czat
Perspektywa

Stereometria

geometria trójwymiarowa Z Wikipedii, wolnej encyklopedii

Stereometria
Remove ads

Stereometriageometria przestrzeni trójwymiarowej. Pojęcie to odnosi się najczęściej do przestrzeni euklidesowej, ale może też dotyczyć przestrzeni hiperbolicznej i rzutowej.

Thumb
Istnieje pięć wielościanów foremnych (brył platońskich) – elementarne twierdzenie stereometrii euklidesowej, udowodnione najpóźniej przez Teajteta (IV w. p.n.e.)

Przedmiotem jej badań są własności brył[1] oraz przekształcenia izometryczne i afiniczne przestrzeni[2].

Fundamentalne własności przestrzeni trójwymiarowej:

  • istnieją cztery punkty nienależące do jednej płaszczyzny,
  • przez trzy punkty nieleżące na jednej prostej można poprowadzić dokładnie jedną płaszczyznę,
  • dwie różne płaszczyzny są albo rozłączne albo mają wspólną prostą[a].
Remove ads

Ewolucja

Podsumowanie
Perspektywa
Thumb
Helisa – przykład krzywej trójwymiarowej
Thumb
Kwadrykipowierzchnie stopnia drugiego

Stereometrię rozwijano już w starożytności; między innymi obliczono pola powierzchni i objętości różnych brył – zwłaszcza wielościanów i prostych figur obrotowych jak walec, stożek i kula. W starożytnej Grecji udowodniono też istnienie dokładnie pięciu brył platońskich, opisano wielościany półforemne (archimedejskie) i postawiono problem konstrukcyjny podwojenia sześcianu zwany też problemem delijskim.

Dalsze postępy przyniosła nowożytność; analiza matematyczna pozwoliła na obliczenie pól powierzchni i objętości szerszej klasy brył, co potrafiło prowadzić do paradoksów jak róg Gabriela. Oprócz tego:

W nowożytności rozwinięto też teorię węzłów, którą można zaliczać do stereometrii, choć jest to dział topologii.

W 2022 roku problemem otwartym pozostaje istnienie prostopadłościanu idealnego; jest to zagadnienie z teorii liczb, jednak postawione na gruncie euklidesowej stereometrii.

Remove ads

Uczeni

Stereometrii przysłużyli się między innymi:

Uwagi

  1. własność nieprawdziwa w przestrzeni rzutowej, tam każde dwie różne płaszczyzny mają wspólną prostą

Przypisy

Bibliografia

Linki zewnętrzne

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads