Najlepsze pytania
Chronologia
Czat
Perspektywa

Pole powierzchni

ilościowa cecha niektórych figur geometrycznych, konkretniej niektórych fragmentów powierzchni, ściśle definiowana metodami analizy matematycznej Z Wikipedii, wolnej encyklopedii

Remove ads

Pole powierzchni (krótko pole lub potocznie powierzchnia) – dwuwymiarowa miara[1] przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.

Ścisła definicja wymaga wykonania pewnej konstrukcji.

Konstrukcja pojęcia pola

Podsumowanie
Perspektywa

I Definicja

Najczęściej spotykana definicja (i jedna z najogólniejszych) odwołuje się do następującej konstrukcji:

  1. Pokrywamy całą płaszczyznę, na której znajduje się dana figura, siatką przylegających kwadratów o bokach
  2. Liczbę kwadratów mających choćby jeden punkt wspólny z figurą, której powierzchnię mierzymy, oznaczamy przez

Tworząc rozmaite siatki kwadratów o coraz mniejszych bokach i tak dalej, uzyskujemy ciąg liczb

Polem powierzchni nazywamy granicę:

Granica ta nie zawsze istnieje. Jeśli nie istnieje, pola powierzchni nie da się obliczyć tą metodą.

Co więcej, konstrukcja ta ma jeszcze jedną wadę – choć dobrze sprawdza się w typowych wypadkach, jednak nie ma podstawowej własności, która intuicyjnie powinna charakteryzować pole powierzchni: suma pól dwóch rozłącznych figur może być większa niż pole figury powstałej z ich połączenia.

Problem wyznaczania pól powierzchni dla wszystkich figur

  • Zbiory
są wymierne oraz
jest niewymierny lub jest niewymierny
są rozłączne i oba mają zewnętrzną miarę Jordana równą 1. Suma tych dwóch figur (czyli wnętrze kwadratu) ma pole powierzchni równe 1, skąd możemy wnioskować, że pola tych figur nie można zdefiniować, używając podejścia Jordana.
  • Istnienie nietrywialnej funkcji, którą dałoby się zmierzyć dowolną figurę i która dla dowolnego ciągu przeliczalnego rozłącznych figur dawałaby wynik równy ich sumie, jest niedowodliwe w standardowym systemie aksjomatów ZFC.
  • Zbiór Vitalego i zbiór Bernsteina (istniejące przy założeniu aksjomatu wyboru) są niemierzalne w sensie Lebesgue’a.
  • Przy założeniu aksjomatu wyboru istnieje skończenie addytywna miara mierząca wszystkie podzbiory przestrzeni.
  • Przy założeniu AD, wszystkie podzbiory przestrzeni euklidesowych są mierzalne w sensie Lebesgue’a.
  • Jeśli istnieje liczba mierzalna, to jest niesprzeczne że continuum jest rzeczywiście mierzalne i że istnieje miara na płaszczyźnie mierząca wszystkie jej podzbiory.
Remove ads

Definicja szkolna

Definicja używana w szkołach podstawowych, gimnazjach i szkołach średnich.

  1. Obieramy kwadrat o boku 1.
  2. Kwadrat ten zwany kwadratem jednostkowym jest jednostką pola.
  3. Pole jest równe liczbie kwadratów jednostkowych lub jego części mieszczących się całkowicie w mierzonej figurze.

Definicja niejawnie używa pojęcia granicy ciągu (jego części), pojęcia nieużywanego. Definicja ta podaje dolne oszacowanie pola powierzchni figury i dobrze sprawdza się w typowych wypadkach.

Remove ads

Pole pod krzywą

Pole między krzywą daną równaniem a osią OX ograniczone prostymi i jest równe całce oznaczonej

Pola niektórych figur

Czworokąty

Thumb
Równoległobok z zaznaczonymi długościami boków jedną z wysokości i miarą kąta między bokami
gdzie
– długość boku;
– długość przekątnej;
gdzie
– długości boków;
– długość przekątnej;
stosunek długości boków;
gdzie
– długości boków;
– wysokość opuszczona na bok
miara kąta między bokami;
funkcja trygonometryczna sinus;
gdzie
– długości podstaw;
– wysokość.

Inne wielokąty

Thumb
Ośmiokąt foremny z jego okręgiem opisanym, okręgiem wpisanym i ich promieniami
gdzie
– długość dowolnego boku, w tym kontekście nazywanego podstawą;
wysokość opuszczona na ten bok;
miara kąta między bokami i
funkcja trygonometryczna sinus;
gdzie
– liczba boków;
– długość boku;
– promień okręgu opisanego na tym wielokącie;
– promień okręgu wpisanego w ten wielokąt;
– liczba pi;
funkcje trygonometryczne kotangens, sinus i tangens.

Inne figury

Thumb
Elipsa z zaznaczonymi półosiami
gdzie
– długość promienia;
– liczba pi;
gdzie
– długości półosi małej i wielkiej.
Remove ads

Zobacz też

Przypisy

Linki zewnętrzne

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads