wielorako definiowane uogólnienie linii prostej Z Wikipedii, wolnej encyklopedii
Krzywa – uogólnienie linii prostej. Mimo intuicyjnej prostoty, pojęcie krzywej okazało się bardzo trudne do ścisłego zdefiniowania[1]. Poprawna definicja powinna obejmować „dowolną linię” (w szczególności na płaszczyźnie lub przestrzeni trójwymiarowej), w tym także linię prostą, która mogłaby się rozgałęziać i przerywać.
Komentatorzy Euklidesa określali krzywą jako „długość bez szerokości” oraz „ograniczenie powierzchni”. Nie są to jednak definicje w sensie matematycznym.
Kartezjusz definiował krzywą jako zbiór punktów spełniających pewne równanie. Definicja ta nie obejmuje jednak wszystkich przypadków.
Kolejna definicja określała krzywą jako sumę skończonej liczby łuków, z których żadne dwa nie mają wspólnych punktów oprócz swych końców. Okazało się jednak, że definicja ta nie obejmuje niektórych przypadków, np.
Pod koniec XIX wiekuGeorg Cantor podał następującą definicję: krzywa płaska to takie continuum na płaszczyźnie, które nie zawiera żadnego koła o dodatnim promieniu. W przypadku płaszczyzny jest ona równoważna przytoczonej niżej definicji podanej przez Urysohna.
Krzywą nazywa się continuum o wymiarze 1. Innymi słowy jest to zbiór, w którym każdy jego punkt ma dowolnie małe otoczenia o zerowymiarowym brzegu. Jest to wtedy zbiór zwarty i spójny.
Krzywą nazywamy continuum, w którym dla każdego jego punktu i dowolnego jego otoczenia istnieje pewne otoczenie wspomnianego punktu zawarte w poprzednim, którego brzeg nie zawiera żadnego continuum złożonego z więcej niż jednego punktu. Definicja ta, sformułowana przez rosyjskiego matematyka Pawła Urysohna, pochodzi z końca lat 20. XX wieku.
Często przez krzywą rozumie się homeomorficzny obraz odcinka (domkniętego lub otwartego).
Definicje geometryczne
W przypadku geometrii różniczkowej definicje krzywej, jako obrazu odcinka otwartego przy odwzorowaniach różniczkowych, zakładają zawsze, że pierwsza pochodna jest różna od zera w każdym punkcie odcinka.
W geometrii różniczkowej płaszczyzny lub przestrzeni przez krzywą rozumie się na ogół odwzorowanie razy różniczkowalne przedziału otwartego na płaszczyznę lub gdzie -ta pochodna jest ciągła (tak zwane krzywe klasy ). Często, aby uniknąć dyskusji o klasie gładkości zakłada się, że funkcje te mają wszystkie pochodne (tak zwane krzywe klasy oczywiście wtedy wszystkie pochodne są ciągłe). Obrazy tych funkcji nie są wtedy zwarte[2].