Лучшие вопросы
Таймлайн
Чат
Перспективы

Локально конечная группа

Из Википедии, свободной энциклопедии

Remove ads

В математике, в области теории групп, локально конечная группа — это группа, определенным образом (как индуктивный предел) конструирующаяся из конечных групп. Как и для конечных групп, для локально конечных групп изучаются подгруппы Силова, подгруппы Картера и т. п.

Определения

Чаще всего употребляются следующие определения:

Локально конечной группой называется группа, каждая конечно порожденная подгруппа которой является конечной.

Локально конечной группой называется группа, у которой каждое конечное подмножество содержится в конечной подгруппе.

Эти определения равносильны.

Примеры

Примеры:

Свойства

Теорема Шмидта: класс локально конечных групп замкнут относительно взятия подгрупп, факторгрупп и расширений[4].

У всякой группы единственная максимальная локально конечная подгруппа[5].

Всякая бесконечная локально конечная группа содержит бесконечную абелеву подгруппу[6].

Если локально-конечная группа содержит конечную максимальную p-подгруппу, то все её максимальные p-подгруппы сопряжены, причём если их количество конечно, то оно сравнимо с 1 по модулю p (см. также Теоремы Силова).

Если каждая счётная подгруппа локально конечной группы содержит не более чем счётное количество максимальных p-подгрупп, то все её максимальные p-подгруппы сопряжены[4].

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads