Лучшие вопросы
Таймлайн
Чат
Перспективы
Параллелограмм
четырёхугольник, у которого противоположные стороны попарно параллельны Из Википедии, свободной энциклопедии
Remove ads
Параллелогра́мм (др.-греч. παραλληλόγραμμον ← παράλληλος — параллельный + γραμμή — линия) — четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых[1]. Существуют другие варианты определения .

Частными случаями параллелограмма являются прямоугольник (все углы прямые), ромб (все стороны равны) и квадрат (прямоугольник и ромб одновременно)[1]. Параллелограмм, не являющийся прямоугольником или ромбом называют ромбоидом (при этом в литературе первой половины XX века термином «ромбоид» иногда именовался дельтоид).
Используется для указания ввода, вывода в графических алгоритмах.
Remove ads
Свойства
Суммиров вкратце
Перспектива


Противолежащие стороны параллелограмма и противолежащие углы параллелограмма — равны. Сумма углов, прилежащих к одной (любой) стороне, равна 180° (по свойству параллельных прямых).
Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам. Точка пересечения диагоналей является центром симметрии параллелограмма. Параллелограмм диагональю делится на два равных треугольника. Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
Стороны параллелограмма и опущенные на них высоты соотносятся следующим образом:
Тождество параллелограмма: сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон:
- ,
где и — длины смежных сторон, а и — длины диагоналей. Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей. У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Четырёхугольник, вершины которого совпадают с серединами сторон произвольного четырёхугольника, является параллелограммом, стороны которого параллельны диагоналям исходного четырёхугольника (вариньонов параллелограмм).
Remove ads
Признаки параллелограмма
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные):
- у четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: и ;
- все противоположные углы попарно равны: и ;
- у четырёхугольника без самопересечений все противоположные стороны попарно равны: и ;
- все противоположные стороны попарно параллельны: и ;
- диагонали делятся в точке их пересечения пополам: и , где — точка пересечения диагоналей;
- сумма средних линий выпуклого четырёхугольника равна его полупериметру;
- сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: .
Remove ads
Площадь параллелограмма

Площадь параллелограмма равна произведению его основания на высоту: , где — сторона, — высота, проведённая к этой стороне. Также площадь параллелограмма может быть вычислена как произведение длин его смежных сторон и и синуса угла между ними: .
Ещё один способ определения площади параллелограмма — через длины смежных сторон и и длину любой из диагоналей по формуле Герона как сумма площадей двух равных примыкающих треугольников[2]:
- ,
где .
Примечания
Литература
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads