Лучшие вопросы
Таймлайн
Чат
Перспективы
Ряд Тейлора
разложение функции в бесконечную сумму степенных функций Из Википедии, свободной энциклопедии
Remove ads
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Ряд Тейлора был известен задолго до публикаций Брука Тейлора[1] — его использовали ещё в XIV веке в Индии[2], а также в XVII веке Грегори и Ньютон.
Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.
Обобщением понятия ряда Тейлора в функциональном анализе является ряд Фантапье.
Remove ads
Определение
Суммиров вкратце
Перспектива
1. Многочленом Тейлора функции вещественной переменной , дифференцируемой раз в точке , называется конечная сумма
- ,
используемая в приближённых вычислениях, как обобщение следствия теоремы Лагранжа о среднем значении дифференцируемой функции:
- при верно .
При записи суммы использованы обозначение и соглашение о произведении по пустому множеству: , .
2. Рядом Тейлора в точке функции вещественной переменной , бесконечно дифференцируемой в окрестности точки , называется формальный степенной ряд
- с общим членом , зависящим от параметра .
Другими словами, рядом Тейлора функции в точке называется ряд разложения функции по положительным степеням двучлена :
- .[3]
Как указано ниже в примерах, наличия бесконечной дифференцируемости функции в окрестности точки не достаточно, чтобы ряд Тейлора сходился к самой функции где-либо, кроме самой точки .
3. Рядом Тейлора в точке функции комплексной переменной , удовлетворяющей в некоторой окрестности точки условиям Коши — Римана, называется степенной ряд
- .
В отличие от вещественного случая, из условий следует, что найдётся такое значение радиуса , что в ряд сходится к функции .
4. В случае ряд
называется рядом Маклорена.
Remove ads
Аналитическая функция
Суммиров вкратце
Перспектива
1. Функция вещественной переменной называется аналитической в точке , если существуют такой радиус и такие коэффициенты , , что может быть представлена в виде сходящегося на интервале степенного ряда: , то есть .
Функция называется аналитической на промежутке (на множестве), если она является аналитической в каждой точке этого промежутка (множества).
2. Степенной ряд на любом компактном подмножестве области сходимости допускает почленное дифференцирование любое количество раз.
Если в -ю производную функции подставить , то получится .
Таким образом, для аналитической в точке функции для некоторого всюду в является верным представление .
Следствие. Функция вещественной переменной является аналитической в точке тогда и только тогда, когда она равна своему ряду Тейлора с параметром на некотором открытом интервале, содержащем точку .
3. Вопрос: будет ли для произвольной бесконечно дифференцируемой в точке функции вещественного переменного её ряд Тейлора сходиться к всюду на каком-нибудь интервале , то есть представима ли этим рядом?
Ответ: нет. Существуют бесконечно дифференцируемые функции вещественной переменной, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности .
Примеры. Функции вещественной переменной , , являются бесконечно дифференцируемыми в точке , причём все эти производные равны нулю.
Следовательно, ряды Тейлора всех этих функций с параметром тождественно равны нулю. Однако, для любого в окрестности точки найдутся точки, в которых функции отличны от . Таким образом, эти функции не являются в точке аналитическими.
Доказательство
Доказательство проведём для функции , предложенной Огюстеном Луи Коши.
Функция , является аналитической функцией комплексной переменной для всех .
Для очевидно, что .
Функция для — это «исправленная» функция , , дополненная пределами слева и справа в точке .
Найдём производную функции в точке . По определению: .
Поскольку для выполняется , то докажем, что для произвольного верно .
Применение правила Лопиталя непосредственно к частям
- не приводит к результату.
Выполним замену переменной: :
.
Пусть . Применяя правило Лопиталя раз, в числителе получим либо (при ) константу , либо (при ) бесконечно малую :
- .
Таким образом,
- .
Найдём (для ) несколько начальных производных функции :
И так далее. Во всех случаях, очевидно, получается произведение на сумму целых отрицательных степеней . Конечная сумма бесконечно малых является бесконечно малой. Таким образом, .
Вычисляя последовательно по определению (как выше) производные в точке , обнаруживаем, что все производные в точке равны нулю.
Примером гладкой функции, не являющейся аналитической ни в одной точке своей области определения, служит функция Фабиуса.
Remove ads
Область сходимости ряда Тейлора
Суммиров вкратце
Перспектива
Ряд Тейлора, являясь степенным рядом, имеет в качестве области сходимости круг (с центром в точке ) для случая комплексной переменной и интервал (с центром в точке ) — для случая вещественной переменной.
1. Например, функция может быть разложена в ряд Тейлора следующим образом: (это известная формула суммы бесконечной убывающей геометрической прогрессии). Однако если функция определена для всех действительных чисел, кроме точки , то ряд сходится только при условии .
2. Радиус сходимости ряда Тейлора можно определить, например, по формуле Даламбера:
- .
3. Рассмотрим для примера экспоненциальную функцию . Поскольку любая производная экспоненциальной функции равна самой функции в любой точке, то радиус сходимости экспоненциальной функции равен . Значит, ряд Тейлора экспоненциальной функции сходится на всей оси для любого параметра .
4. От параметра — точки разложения ряда Тейлора — зависит область его сходимости.
Например, разложим в общем случае (для произвольного ) в ряд Тейлора функцию : .
Можно доказать с помощью формулы суммы геометрической прогрессии, что данный ряд, как функция аргумента , при любых значениях (кроме ) имеет один и тот же вид.
Действительно,
- .
Область сходимости ряда может быть задана неравенством . И теперь эта область зависит от . Например, для ряд сходится при . Для ряд сходится при .
Remove ads
Формула Тейлора
Суммиров вкратце
Перспектива
Предположим, что функция имеет все производные до -го порядка включительно в некотором промежутке, содержащем точку . Найдем многочлен степени не выше , значение которого в точке равняется значению функции в этой точке, а значения его производных до -го порядка включительно в точке равняются значениям соответствующих производных от функции в этой точке.
Достаточно легко доказать, что такой многочлен имеет вид , то есть это -я частичная сумма ряда Тейлора функции . Разница между функцией и многочленом называется остаточным членом и обозначается . Формула называется формулой Тейлора[4]. Остаточный член дифференцируем раз в рассматриваемой окрестности точки . Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении. Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.
Теорема:
Если функция имеет производную на отрезке с концами и , то для произвольного положительного числа найдётся точка , лежащая между и , такая, что |
Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).
Различные формы остаточного члена
В форме Лагранжа:
В форме Коши:
В интегральной форме:
Вывод
- Методом интегрирования по частям получим
- откуда
Ослабим предположения:
- Пусть функция имеет производную в некоторой окрестности точки и -ю производную в самой точке , тогда:
- В асимптотической форме (форме Пеано, локальной форме):
Вывод
- Поскольку , то предел отношения при , стремящемся к , может быть найден по правилу Лопиталя:
- Поскольку исходный предел равен нулю, это значит, что остаточный член является бесконечно малой функцией более высокого порядка, чем , при . А это и есть определение о-малого.
Remove ads
Критерий аналитичности функции
Предположим, что некоторую функцию нужно разложить в ряд Тейлора в некоторой точке . Для этого предварительно нужно убедиться, что функция является аналитической (то есть буквально разложимой) в этой точке. В противном случае получится не разложение функции в ряд Тейлора, а просто ряд Тейлора, который не равен своей функции. Причем, как можно убедиться на примере функции Коши, и функция может быть сколько угодно раз дифференцируемой в точке , и её ряд Тейлора с параметром может быть сходящимся, но при этом ряд Тейлора может быть не равен своей функции.
Во-первых, необходимым условием аналитичности функции является сходимость ряда Тейлора в некоторой непрерывной области. Действительно, если ряд Тейлора сходится всего в одной точке, то это точка , потому что в ней ряд Тейлора сходится всегда. Но тогда ряд Тейлора равен функции только в этой единственной точке, а значит, данная функция не будет аналитической.
Во-вторых, по формуле Тейлора в ряд Тейлора с остаточным членом может быть разложена любая (а не только аналитическая) функция, бесконечно дифференцируемая в окрестности, содержащей точку . Пусть ряд Тейлора с параметром такой функции сходится в этой окрестности. Если существует предел каждой из двух последовательностей, то предел суммы этих последовательностей равен сумме их пределов. Тогда для всех из окрестности по формуле Тейлора можно записать , где — ряд Тейлора.
Очевидно, что функция является аналитической в точке тогда и только тогда, если в указанной окрестности точки существует непрерывная область такая, что для всех остаточный член её разложения по формуле Тейлора стремится к нулю с ростом : .
В качестве примера рассмотрим экспоненциальную функцию . Её ряд Тейлора сходится на всей оси для любых параметров . Докажем теперь, что эта функция является аналитической во всех точках .
Остаточный член разложения этой функции в форме Лагранжа имеет вид , где — некоторое число, заключенное между и (не произвольное, но и не известное). Тогда, очевидно,
Здесь используется, что на фиксированном промежутке экспонента ограничена некоторым числом
Причем, как видно, предел остаточного члена равен нулю для любых и .
Remove ads
Ряды Маклорена некоторых функций
- Экспонента:
- Натуральный логарифм («ряд Меркатора»): для всех
- Биномиальное разложение: для всех и всех комплексных где — обобщённые биномиальные коэффициенты.
- Квадратный корень[6]: для всех
- Обратный квадратный корень[6]: для всех
- Геометрические ряды[англ.]*:
- для всех
- для всех
- для всех
- Конечный геометрический ряд: для всех
- Тригонометрические функции[6][7]:
- Синус:
- Косинус:
- Тангенс: для всех где — числа Бернулли.
- Котангенс: для всех где — числа Бернулли.
- Секанс: для всех где — числа Эйлера.
- Косеканс: для всех где — числа Бернулли.
- Обратные тригонометрические функции[6][8]:
- Арксинус: для всех [9].
- Арккосинус: для всех
- Арктангенс: для всех
- Арккотангенс: для всех
- Гиперболические функции[6][10]:
- Гиперболический синус:
- Гиперболический косинус:
- Гиперболический тангенс: для всех
- Гиперболический котангенс: для всех
- Гиперболический секанс: для всех
- Гиперболический косеканс: для всех
- Обратные гиперболические функции[6][11]:
- Гиперболический арксинус: для всех
- Гиперболический арктангенс: для всех
- W-функция Ламберта:
- Другие функции:
Remove ads
Формула Тейлора для функции двух переменных
Пусть функция имеет непрерывные производные до -го порядка включительно в некоторой окрестности точки . Введём дифференциальный оператор
- .
Тогда разложение (формула Тейлора) функции по степеням для в окрестности точки будет иметь вид
где — остаточный член в форме Лагранжа:
Следует иметь в виду, что операторы и в действуют только на функцию , но не на и/или .
Аналогичным образом формула строится для функций любого числа переменных, меняется только число слагаемых в операторе .
В случае функции одной переменной .
Remove ads
Формула Тейлора многих переменных
Суммиров вкратце
Перспектива
Для получения формулы Тейлора функции переменных , которая в некоторой окрестности точки имеет непрерывные производные до -го порядка включительно, введём дифференциальный оператор
Тогда разложение (формула Тейлора) функции по степеням в окрестности точки имеет вид
где — остаточный член порядка .
Для функции переменных, бесконечно дифференцируемой в некоторой окрестности точки , ряд Тейлора имеет вид:
.
В другой форме ряд Тейлора можно записать таким образом:
.
Пример разложения в ряд Маклорена функции трёх переменных
Найдём выражение для разложения в ряд Тейлора функции трёх переменных , и в окрестности точки до второго порядка малости. Оператор будет иметь вид
Разложение в ряд Тейлора запишется в виде
Учитывая, что
получим
Например, при ,
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads