Лучшие вопросы
Таймлайн
Чат
Перспективы
W-функция Ламберта
Из Википедии, свободной энциклопедии
Remove ads
-функция Ламберта определяется как обратная функция к , для комплексных . Обозначается или . Для любого комплексного она определяется функциональным уравнением:
-функция Ламберта не может быть выражена в элементарных функциях. Она применяется в комбинаторике, например, при подсчёте числа деревьев, а также при решении уравнений.
Remove ads
История
Функция изучалась ещё в работе Леонарда Эйлера 1779-го года, но не имела самостоятельного значения и названия вплоть до 1980-х годов. Как самостоятельная функция была введена в системе компьютерной алгебры Maple, где для неё использовалось имя LambertW. Имя Иоганна Генриха Ламберта было выбрано, поскольку Эйлер ссылался в своей работе на труды Ламберта, и поскольку «называть ещё одну функцию именем Эйлера было бы бесполезно»[1].
Remove ads
Многозначность


Поскольку функция не является инъективной на интервале , является многозначной функцией на .
- Если ограничиться вещественными и потребовать , будет определена однозначная функция — основная ветвь функции .
- Если ограничиться вещественными , и потребовать , будет определена однозначная функция — дополнительная ветвь функции .
Remove ads
Асимптотики
Суммиров вкратце
Перспектива
Полезно знать асимптотики функции при стремлении к некоторым ключевым точкам. Например, для ускорения сходимости при выполнении рекуррентных расчётов.
Другие формулы
Remove ads
Свойства
Суммиров вкратце
Перспектива
С помощью дифференцирования неявной функции можно получить, что при функция Ламберта удовлетворяет следующему дифференциальному уравнению:
С помощью теоремы об обращении рядов можно получить выражение для ряда Тейлора; он в окрестности нуля сходится при :
С помощью интегрирования по частям можно найти интеграл от W(z):
Значения в некоторых точках
- , при
- (постоянная Омега)
Формулы
Remove ads
Решение уравнений с помощью W-функции
Суммиров вкратце
Перспектива
Решения многих трансцендентных уравнений могут быть выражены в форме W-функции.
Пример 1:
- , следовательно, , откуда .
Пример 2:
- , следовательно, , откуда .
Пример 3:
- , тогда , следовательно, , откуда .
Remove ads
Обобщённые применения W-функции Ламберта
Суммиров вкратце
Перспектива
Стандартная W-функция Ламберта показывает точные решения трансцендентных уравнений формы:
где a0, c и r являются вещественными константами. Решением такого уравнения является . Ниже перечислены некоторые из обобщённых применений W-функции Ламберта:[2][3][4]
- Эта функция может быть использована в общей теории относительности и в квантовой механике (квантовой гравитации) в нижних измерениях. В журнале «Classical and Quantum Gravity»[5] была представлена ранее неизвестная связь между этими двумя понятиями, где правая сторона уравнения превращается в квадратный многочлен по переменной x:
- и где константы r1 и r2, являются корнями этого квадратичного многочлена. В данном случае решением этого уравнения является функция с аргументом x , а ri и ao являются параметрами этой функции. С этой точки зрения, несмотря на то, что данное обобщённое применение W-функции Ламберта напоминает гипергеометрическую функцию и функцию «Meijer G», оно принадлежит к другому типу функций. Когда r1 = r2, то обе стороны уравнения (2) могут быть упрощены к уравнению (1), и таким образом общее решение сводится к стандартной W-функции. Уравнение (2) показывает определяющие отношения в скалярном поле дилатонноя, из чего следует решение задачи измерения линейной гравитации парных тел в 1+1 измерениях (измерение пространства и измерение времени) в случае неравных масс, а также решение задачи двумерного стационарного уравнения Шрёдингера с потенциалом в виде дельта-функции Дирака для неодинаковых зарядов в одном измерении.
- Эта функция может быть использована для решения частной задачи внутренних энергий квантовой механики, состоящей в определении относительного движения трёх тел, а именно трёхмерной молекулярный ион водорода[6][7]. В этом случае правая сторона уравнения (1) (или (2)) теперь становится отношением двух беспредельных многочленов по переменной x:
- где ri и si константы, а x является функцией между внутренней энергией и расстоянием внутри ядра R. Уравнение (3), а также его упрощённые формы, выраженные в уравнениях (1) и (2), относятся к типу дифференциальных уравнений с запозданием.
Применения W-функции Ламберта в основных проблемах физики не ограничиваются стандартным уравнением (1), как было недавно показано в областях атомной, молекулярной и оптической физики[8] и критерий «Кейпер-Ли» для Гипотеза Римана[9].
Remove ads
Вычисление
Суммиров вкратце
Перспектива
-функция может быть приблизительно вычислена с помощью рекуррентного соотношения[1]:
Пример программы на языке Python:
import math
def lambertW(x, prec=1e-12):
w = 0
for i in range(100):
wTimesExpW = w * math.exp(w)
wPlusOneTimesExpW = (w + 1) * math.exp(w)
w -= (wTimesExpW - x) / (wPlusOneTimesExpW - (w + 2) * (wTimesExpW - x) / (2 * w + 2))
if prec > abs((x - wTimesExpW) / wPlusOneTimesExpW):
break
if prec <= abs((x - wTimesExpW) / wPlusOneTimesExpW):
raise Exception("W(x) не сходится достаточно быстро при x=%f" % x)
return w
Для приближённого вычисления можно использовать следующую формулу[10]. Приведённая функция похожа, но более чем на 10 % отличается от функции Ламберта.
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads