Топ питань
Часова шкала
Чат
Перспективи
Ліндельофів простір
З Вікіпедії, вільної енциклопедії
Remove ads
У математиці ліндельофів простір (простір Ліндельофа) [1][2] — топологічний простір, в якому кожне відкрите покриття має злічене підпокриття. Властивість Ліндельофа є послабленням частіше використовуваного поняття компактності, яке вимагає існування скінченного підпокриття.
Ця стаття не містить посилань на джерела. (квітень 2018) |
Успадкований простір Ліндельофа[3] — топологічний простір, який є підпростором Ліндельофа. Такий простір іноді називають сильно ліндельофовим, але збиває з толку те, що такий термін іноді використовується в зовсім іншому значенні.[4] Термін успадкований простір Ліндельофа є більш поширеним і однозначним.
Простори Ліндельофа названі на честь фінського математика Ернста Леонарда Ліндельофа.
Remove ads
Властивості просторів Ліндельофа
Узагальнити
Перспектива
- Будь-який компактний простір, і взагалі кожен σ-компактний простір, є простором Ліндельофа. Зокрема, кожен зліченний простір також є простором Ліндельофа.
- Простір Ліндельофа є компактним тоді й лише тоді, коли він є зліченно компактним.
- Будь-який простір, що задовольняє другу аксіому зліченності, [5] є простором Ліндельофа, проте не навпаки. Наприклад, існує багато компактних просторів, які не задовольняють другу аксіому зліченності.
- Метричний простір є ліндельофовим тоді й лише тоді, коли він сепарабельний, і тоді й лише тоді, коли він задовольняє другу аксіому зліченності.[6]
- Будь-який регулярний простір Ліндельофа є нормальним.[7]
- Будь-який регулярний простір Ліндельофа є паракомпактним.[8]
- Зліченне об'єднання підпросторів Ліндельофа топологічного простору є ліндельофовим простором.
- Будь-який замкнений підпростір простору Ліндельофа є ліндельофовим простором.[9] Отже, будь-яка Fσ-множина у просторі Ліндельофа є ліндельофовим простором.
- Довільні підпростори простору Ліндельофа не обов'язково є ліндельофовими просторами.[10]
- Неперервний образ простору Ліндельофа є ліндельофовим простором.[9]
- Добуток простору Ліндельофа і компактного простору є ліндельофовим простором.[11]
- Добуток простору Ліндельофа і σ-компактного простору є ліндельофовим простором.
Це є наслідком попередньої властивості.
- Добуток двох просторів Ліндельофа не обов'язково є ліндельофовим простором.
Наприклад, лінія Зоргенфрея є ліндельофовим простором, але площина Зоргенфрея[en] не є ліндельофовим простором.[12]
- У просторі Ліндельофа будь-яке локально скінченне[en] сімейство непорожніх підмножин є зліченним.
Remove ads
Властивості успадкованого простору Ліндельофа
- Простір Ліндельофа є успадкованим тоді й лише тоді, коли будь-який відкритий підпростір простору є ліндельофовим простором.[13]
- Успадковані простори Ліндельофа є замкненими відносно зліченних об'єднань, підпросторів і неперервних образів.
- Регулярний простір Ліндельофа є успадкованим ліндельофовим простором тоді й лише тоді, коли він є досконало нормальним.[14][15]
- Будь-який простір, що задовольняє другу аксіому зліченності, є успадкованим простором Ліндельофа.
- Будь-який злічений простір є успадкованим простором Ліндельофа.
- Будь-який польський простір є успадкованим простором Ліндельофа.
- Будь-яка міра Радона на успадкованому просторі Ліндельйофа є модерованою.
Remove ads
Приклад: Площина Зоргенфрея не є простором Ліндельофа
Узагальнити
Перспектива
Добуток просторів Ліндельофа не обов'язково є простором Ліндельофа. Типовим прикладом цього є площина Зоргенфрея[en] , яка є добутком дійсної прямої з топологією напіввідкритих інтервалів з самою собою. Відкритими множинами на площині Зоргенфрея є об'єднання напіввідкритих прямокутників, які включають нижній і лівий краї і опускають верхній і правий краї, включаючи верхній лівий, нижній лівий і нижній правий кути. Антидіагональ площини — множина точок таких, що .
Розглянемо відкрите покриття площини , яке складається з:
- Множини всіх прямокутників , де знаходяться на антидіагоналі.
- Множинн всіх прямокутників , де знаходяться на антидіагоналі.
Тут слід зауважити, що кожна точка на антидіагоналі міститься точно в одній множині покриття, тому всі ці множини потрібні.
Інший спосіб переконатися, що не є простором Ліндельофа, полягає в тому, що треба помітити, що антидіагональ визначає замкнутий і незлічений дискретний підпростір простору . Цей підпростір не є підпростором Ліндельофа, і тому весь простір не може бути ліндельофовим простором (оскільки замкнені підпростори просторів Ліндельофа також є просторами Ліндельофа).
Remove ads
Узагальнення
Наступне означення узагальнює означення компактності та ліндельофності: Топологічний простір є -компактним (або -ліндельофовим), де є будь-яким кардинальним числом, якщо кожне відкрите покриття множини має підпокриття кардинальності строго меншої ніж . Компактний простір є тоді -компактним і простір Ліндельофа є тоді -компактним.
Степінь Ліндельофа, або число Ліндельофа , є найменшим кардинальним числом таким, що кожна відкрите покриття простору має підпокриття розмірності не більше . У цьому позначенні, простір є простором Ліндельофа, якщо . Визначене вище число Ліндельофа не розрізняє компактні простору і некомпактні простору Ліндельофа. Деякі автори назвали числом Ліндельофа інше поняття: найменше кардинальне число таке, що кожне відкрите покриття простору має підпокриття розмірності строго меншої ніж .[16] У цьому останньому (і менш уживаному) сенсі число Ліндельофа є найменшим кардинальним числом таким, що топологічний простір є -компактним. Це поняття іноді також називають степенем компактності простору .[17]
Remove ads
Див. також
- Аксіоми зліченності
- Лема Ліндельофа[en]
Посилання
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads