Топ питань
Часова шкала
Чат
Перспективи
Періодична функція
З Вікіпедії, вільної енциклопедії
Remove ads
Періоди́чна фу́нкція ― функція, яка повторює свої значення через деякий ненульовий період, тобто не змінює свого значення при додаванні до аргумента фіксованого ненульового числа (періоду).

Означення
Нехай — абелева група (зазвичай вважається, що — дійсні числа з операцією додавання або — комплексні числа). Функція називається періодичною з пері́одом , якщо виконується
- .
Якщо ця рівність не виконується для всіх , то функція називається аперіоди́чною.
Якщо для функції існують два періоди , відношення яких не рівне дійсному числу, тобто є , то називається двоперіоди́чною фу́нкцією. В цьому випадку значення на всій площині визначаються значеннями в паралелограмі, натягнутому на .
Remove ads
Примітка
Період функції визначається неоднозначно. Так, якщо — період, то і довільний елемент вигляду , де — довільне натуральне число, теж є періодом.
Але якщо серед множини періодів є найменше значення, то воно називається головним (або основним) періодом функції.
Remove ads
Дії над періодичними функціями
Виконуються наступні твердження стосовно суми періодичних функцій:
- Сума двох функцій зі співрозмірними (тобто, такими, що їх відношення є раціональним числом) періодами і є функцією з основним періодом НСК.
- Сума двох функцій із неспіврозмірними періодами є неперіодичною функцією.
- Не існує періодичних функцій, не рівних константі, у яких періодами є неспіврозмірні числа.
Приклади
- Функція рівна константі є періодичною, і довільне дійсне число є її періодом. Головного періоду вона не має.
- Функція є аперіодичною.
Remove ads
Див. також
Джерела
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2025. — 2391 с.(укр.)
- Вірченко Н. О., Ляшко І. І., Швецов К. І. Графіки функцій. Довідник. — Київ : Наукова думка, 1977. — 320 с.(укр.)
- Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 1. — К. : Вища школа, 1992. — 496 с. — ISBN 5-11-003757-4.(укр.)
- Ляшко І. І., Боярчук О. К., Гай Я. Г., Головач Г. П. Математичний аналіз в прикладах і задачах. — 2025. — 550+ с.(укр.)
- Дороговцев А. Я. Математичний аналіз. Частина 1. — К. : Либідь, 1993. — 320 с. — ISBN 5-325-00380-1.(укр.)
- Weisstein, Eric W. Періодична функція(англ.) на сайті Wolfram MathWorld.
- Функція періодична // Універсальний словник-енциклопедія. — 4-те вид. — К. : Теза, 2006.
![]() |
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads