Топ питань
Часова шкала
Чат
Перспективи
T-розподіл Стьюдента
З Вікіпедії, вільної енциклопедії
Remove ads
У теорії ймовірностей та статистиці t-розподіл чи t-розподіл Стьюдента — різновид розподілу ймовірностей, який виникає в задачі оцінення сподіваного значення нормально розподіленої популяції, коли розмір вибірки малий. Цей розподіл є основою популярного t-тесту Стьюдента статистичної значущості різниці математичних сподівань двох вибірок, та довірчого інтервалу різниці очікуваних значень двох вибірок. t-розподіл Стьюдента є також частковим випадком узагальненого гіперболічного розподілу[en]. Розроблений В. С. Госсетом (псевдонім «Стьюдент»).
Remove ads
Як розподіл Стьюдента виникає з вибірки
Узагальнити
Перспектива
Нехай X1, …, Xn — це незалежні випадкові величини з розподілу N(μ, σ2), тобто це вибірка розміру n з популяції з нормальним розподілом з середнім значенням μ і дисперсією σ2.
Нехай
буде середнім вибірки і нехай
буде (виправлена згідно з Бесселем) дисперсія вибірки. Тоді випадкова величина
має стандартний нормальний розподіл (тобто, з середнім 0 і дисперсією 1), а випадкова величина
(де ми підставили S замість σ) має t-розподіл Стьюдента з n − 1 ступенями вільності. Через те що ми замінили на єдина неспостережувана величина тут це отже ми можемо використати це, щоб знайти довірчі інтервали для Зауважте, що незважаючи на те, що вони базуються на тій самій вибірці чисельник і знаменник у попередньому виразі — незалежні випадкові величини. Це можна побачити спостерігши, що і згадавши, що і це дві лінійні комбінації тої самої множини н.о.р. нормально розподілених випадкових величин.
Remove ads
Означення
Узагальнити
Перспектива
Щільність розподілу
Т-розподіл Стьюдента має функцію щільності розподілу, що задається формулою
де — кількість ступенів вільності, — гамма-функція. Формула також може бути записана у вигляді
де B — бета-функція.
Для парних значень
Для непарних значень
Функція розподілу ймовірності
Функція розподілу може бути записана в термінах I, регуляризованої неповна бета-функція. Для t > 0[2]
з
Інші значення отримуються симетрично. Альтернативна формула дійсна для t2 < ν, така[2]
де 2F1 — певний випадок гіпергеометричної функції.
Особливі випадки
Для певних значень параметра розподіл Стьюдента має просту форму.
- Функція розподілу:
- Функція щільності:
- Див. Розподіл Коші
- Функція розподілу:
- Функція щільності:
- Функція щільності:
- Функція щільності:
- Див. нормальний розподіл
Порівняння з нормальним розподілом
Загалом щільність t-розподілу схожа на дзвоноподібну функцію щільності нормального розподілу, з тією відмінністю, що у t-розподілу вона трохи нижча і ширша. За кількості ступенів свободи, що прямує до нескінченості, t-розподіл прямує до нормального розподілу з математичним сподіванням 0 і дисперсією 1.
На графіках нижче показано щільності t-розподілу для зростаючих значень параметру . Для порівняння, нормальний розподіл зображено синім. Можна помітити, що із збільшенням щільність t-розподілу наближається до нормального.
Remove ads
Таблиця вибраних значень
Узагальнити
Перспектива
Наступна таблиця містить кілька вибраних значень цього розподілу, з r ступенями свободи для інтервалів певності 90 %, 95 %, 97,5 % та 99,5 %. Ці числа «односторонні», тобто коли ми бачимо «90%», «4 ступенів свободи», та «1.533»,
- це означає
- це не означає
Тому, по симетрії розподілу, ми маємо
та в результаті
r | 75 % | 80 % | 85 % | 90 % | 95 % | 97.5 % | 99 % | 99.5 % | 99.75 % | 99.9 % | 99.95 % |
1 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 127.3 | 318.3 | 636.6 |
2 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 14.09 | 22.33 | 31.60 |
3 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 7.453 | 10.21 | 12.92 |
4 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |
5 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 4.773 | 5.893 | 6.869 |
6 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 |
7 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 |
8 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 |
9 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 |
10 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 |
11 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437 |
12 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.428 | 3.930 | 4.318 |
13 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 |
14 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.326 | 3.787 | 4.140 |
15 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 |
16 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.252 | 3.686 | 4.015 |
17 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.222 | 3.646 | 3.965 |
18 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.197 | 3.610 | 3.922 |
19 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 |
20 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 |
21 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 |
22 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 |
23 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.104 | 3.485 | 3.767 |
24 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.091 | 3.467 | 3.745 |
25 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 |
26 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 |
27 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.057 | 3.421 | 3.690 |
28 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 |
29 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.038 | 3.396 | 3.659 |
30 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 |
40 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 |
50 | 0.679 | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 2.937 | 3.261 | 3.496 |
60 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 |
80 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 |
100 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 2.871 | 3.174 | 3.390 |
120 | 0.677 | 0.845 | 1.041 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 2.860 | 3.160 | 3.373 |
0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 2.807 | 3.090 | 3.291 |
Наприклад, якщо ми маємо вибірку з варіацією 2 та середнім значенням 10, вибраним з набору 11 елементів (10 ступенів свободи), використовуючи формулу:
Ми можемо визначити що з 90-відсотковою впевненістю ми маємо дійсне середнє значення, яке лежить в інтервалі:
Та, знову з 90 % впевненістю, ми маємо дійсне середнє значення, яке лежить поза інтервалом:
Так, з 80 % впевненістю, ми маємо дійсне середнє значення, яке лежить поміж:
Remove ads
Література
- «Student» (W.S. Gosset) (1908) The probable error of a mean. Biometrika[en] 6(1):1-25.
- M. Abramowitz and I. A. Stegun, eds. (1972) Handbook of Mathematical Functions[en] with Formulas, Graphs, and Mathematical Tables. New York: Dover. (See Section 26.7.)
- R.V. Hogg and A.T. Craig (1978) Introduction to Mathematical Statistics. New York: Macmillan.
Посилання
- VassarStats Density plot, critical values, etc., calculated for a user-specified number of d.f.
- Earliest Known Uses of Some of the Words of Mathematics (S) (Remarks on the history of the term «Student's distribution»)
- Distribution Calculator [Архівовано 29 січня 2007 у Wayback Machine.] Calculates probabilities and critical values for normal, t-, chi2- and F-distribution
- New Methods for Managing «Student's» T Distribution Surveys techniques for sampling with new techniques using the inverse CDF directly
Remove ads
Див. також
Примітки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads