热门问题
时间线
聊天
视角
酸度係數
来自维基百科,自由的百科全书
Remove ads
酸度系數(英語:Acid dissociation constant,又名酸解離常數,代號Ka、pKa、pKa值),在化學及生物化學中,是指一個特定的平衡常數,以代表一種酸解離氫離子的能力。
此條目需要補充更多來源。 (2023年6月27日) |
該平衡狀況是指由一種酸(HA)中,將氫離子(即質子)轉移至水(H2O)。水的濃度[H2O]是不會在系數中顯示的。一種酸的pKa越大則酸性越弱,pKa越小則酸性越強(反過來說,Ka值越大,解離度高,酸性越強,Ka值越小,部份解離,酸性越弱)。pKa<0的酸在水中是強酸,介於0與4.0之間為中強酸,其他為弱酸。解離的化學反應(酸的游離反應通式)為:
平衡狀況亦會以氫離子來表達,反映出酸質子理論:
平衡常數的方程式為:
由於在不同的酸這個常數會有所不同,所以酸度系數會以常用對數的加法逆元,以符號pKa,來表示:
在同一的濃度下,較大的Ka值(或較少的pKa值)解離的能力較強,代表較強的酸。一般來說,Ka>1(或pKa<0),則為強酸;Ka<10-4(或pKa>4),則為弱酸。
利用酸度系數,可以容易的計算酸的濃度、共軛鹼、質子及氫氧離子。如一種酸是部份中和,Ka值可以用來計算出緩衝溶液的pH值。在亨德森-哈塞爾巴爾赫方程式亦可得出以上結論。

Remove ads
共軛鹼的鹼度系數
由此類比,亦可以為共軛鹼A–定義鹼度系數Kb及pKb:
以下是平衡狀態的解離常數:
Remove ads
酸度系數與鹼度系數的關係
由於HA與A–的游離作用就等同於水的自我離子化,酸度系數與鹼度系數的積就相等於水的解離常數(Kw),故pKa與pKb的和即為pKw。其中Kw在25℃下為1.0 × 10-14,pKw為14。
由於Ka與Kb的積是一常數,較強的酸即代表較弱的共軛鹼;較弱的酸,則代表較強的共軛鹼。
Remove ads
影響酸鹼強度的因素
作為一個平衡常數,酸度系數Ka是以反應物與化合物,更準確的應是質子化狀態(AH)與脫質子化狀態(A–)的自由能差ΔG°來計算。分子的交互作用偏向脫質子化狀態時會提升Ka值(因[A–]與[AH]的比增加),或是降低pKa值。相反的,分子作用偏向質子化狀態時,Ka值會下降,或提升pKa值。
舉例假設AH在質子化狀態下釋放一個氫鍵給原子X,這個氫鍵在脫質子化狀態下是欠缺的。因質子化狀態有著氫鍵的優勢,pKa值隨之而上升(Ka下降)。pKa值的轉移量可以透過以下方程式從ΔG°的改變來計算:
其他的分子交互作用亦可以轉移pKa值:只要在一個分子的滴定氫附近加入一個抽取電子的化學基(如氧、鹵化物、氰基或甚至苯基),就能偏向脫質子化狀態(當質子解離時須穩定餘下的電子)使pKa值下降。例如將次氯酸連續氧化,就能得出不斷上升的Ka值:HClO < HClO2 < HClO3 < HClO4。次氯酸(HClO)與過氯酸(HClO4)Ka值的差約為11個數量級(約11個pKa值的轉移)。靜電的交互作用亦可對平衡狀態有所影響,負電荷的存在會影響帶負電、脫質子化物質的形成,從而提升了pKa值。這即是分子中的一組化學基的離子化,會影響另一組的pKa值。
富馬酸及馬來酸是pKa值轉移的古典例子。它們兩者都有相同的分子結構,以兩組雙鍵碳原子來分隔兩組羧酸。富馬酸是反式異構物,而馬來酸則是順式異構物。按照其對稱性,有人會想這兩個羧酸擁有同樣約為4的pKa值。在富馬酸可以說是接近的推論,它的pKa值約為3.5及4.5。相反,馬來酸卻有著約1.5及6.5的pKa值。這是因當其中一個羧酸脫質子化時,另一組卻形成一強烈的氫鍵與它連合,整體上來說,這個改變偏向了脫質子化狀態下接受氫鍵的羧酸(由約4降至1.5),及偏向質子化狀態下放出氫鍵的羧酸(由約4上升至6.5)。
pKa值的重要性
pKa值會影響一物質的特徵,例如活躍性、水溶性及光譜性質。在生物化學上,蛋白質及胺基酸側鏈的pKa值是對酶的活躍性及蛋白質的穩定性十分重要。
一般物質的pKa值
![]() |
以下列出一些物質在25℃水下量度的pKa值,同時列出酸性強於過氯酸的質子酸的H0值:
- *氨和胺基的數值是相應的氨離子的pKa值。(非與水反應)
- **碳酸的濃度假定為碳酸與二氧化碳的濃度和。
- ***質子化能力高於過氯酸的質子酸所列數據為H0值,過氯酸的H0值為-13。
Remove ads
常見物質的pKa數值
有多種技術來確定化學物質的pKa值,導致不同來源之間存在一些差異。 測量值之間通常有0.1個單位的誤差。下列物質的數據都是在25℃時水中測得。[1]
Remove ads
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads