Top Qs
Timeline
Chat
Perspective

2017 in archosaur paleontology

Overview of the events of 2017 in archosaur paleontology From Wikipedia, the free encyclopedia

Remove ads

The year 2017 in archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. The year 2017 in paleontology included various significant developments regarding archosaurs.

This article records new taxa of fossil archosaurs of every kind that have been described during the year 2017, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2017.

Remove ads

General research

  • A study on the evolution of forelimb anatomy, musculature and joint ranges of motion from early archosaurs to sauropodomorph dinosaurs based on data from Mussaurus patagonicus and extant freshwater crocodile is published by Otero et al. (2017).[1]

Pseudosuchians

Summarize
Perspective

Research

New taxa

More information Name, Novelty ...
Remove ads

Non-avian dinosaurs

Summarize
Perspective

Research

New taxa

More information Name, Novelty ...
Remove ads

Birds

Summarize
Perspective

Research

  • A study on the method allowing estimation of wing loading and aspect ratio in Mesozoic birds and on flight modes that were possible for Mesozoic birds is published by Serrano et al. (2017).[216]
  • A study on whether sternal keel length and ilium length were correlated in bird evolution, based on data from extant birds and Mesozoic birds, is published by Zhao, Liu and Li (2017).[217]
  • A study on the impact of varying oxygen concentrations, global temperatures and air densities on the flight performance of extinct birds and on major diversification events which took place during the evolution of birds is published by Serrano et al. (2017).[218]
  • A study on the pectoral girdle morphology of Mesozoic birds and its implications for the evolution of the avian flight musculature (specifically the supracoracoideus muscle) is published by Mayr (2017).[219]
  • A study on the morphological characteristics and evolution of the pygostyle and tail feathers in Early Cretaceous birds and closely related non-avian theropods is published by Wang & O'Connor (2017).[220]
  • A study on the postnatal skeletal development of limb bones in four species of extant aquatic birds (the streaked shearwater, the Japanese cormorant, the black-tailed gull and the rhinoceros auklet) and its implications for the assessment of ontogenetic stage of fossil and skeletal bird specimens is published by Watanabe (2017).[221]
  • A study estimating values of body weight, wing span and wing area of the trackmakers of the Cretaceous ichnotaxa Archaeornithipus meijidei, Hwangsanipes choughi and Yacoraitichnus avis is published by Tanaka (2017).[222]
  • The presence of the atlas rib in Archaeopteryx is reported for the first time by Tsuihiji (2017).[223]
  • A tooth attributed to an archaeopterygid bird is described from the Early Cretaceous of France by Louchart & Pouech (2017).[224]
  • A well-preserved skull of a juvenile specimen of Sapeornis chaoyangensis is described by Wang et al. (2017), preserving what the authors consider to be the complete dentition.[225]
  • A study on the flight capabilities of Sapeornis chaoyangensis is published by Serrano & Chiappe (2017).[226]
  • A study on the relationship between the oxygen isotope composition of bird bone phosphate and that of the drinking water of birds, as well as on implications of applying the discovered equation to Confuciusornis and to the Miocene and Pliocene penguins from Peru, is published by Amiot et al. (2017).[227]
  • A specimen of Confuciusornis sanctus with tendon- and cartilage-like tissues preserved around its ankle joint (with microstructure evident at the cellular level) is described by Jiang et al. (2017).[228]
  • A specimen of Eoconfuciusornis preserving soft-tissue traces of the ovary and wing is described by Zheng et al. (2017);[229] the conclusions of this study are subsequently contested by Mayr et al. (2020), who interpret putative ovarian follicles of this specimen and other birds from the Jehol Biota as more likely to be ingested food items.[230]
  • A study on the taxonomic and morphological diversity of Early Cretaceous enantiornithines is published by Zelenkov (2017), who argues that members of the family Pengornithidae might be more closely related to Ornithuromorpha than to enantiornithines.[231]
  • A complete description of the skeletal anatomy of Chiappeavis magnapremaxillo, suggesting that rectricial bulbs were present in basal members of the enantiornithines, is published by O'Connor et al. (2017).[232]
  • A specimen of the enantiornithine Pterygornis dapingfangensis with a completely fused carpometacarpus and pelvis is described by Wang, Li & Zhou (2017), who also study the evolution of the manus and pelvis fusions in nonavian theropods, enantiornithines and ornithuromorphs.[233]
  • A bohaiornithid enantiornithine specimen with exceptionally preserved feathers, providing information on the colouration of the bird, is described from the Early Cretaceous Jiufotang Formation (China) by Peteya et al. (2017).[234]
  • Nearly half of a hatchling of an enantiornithine with preserved soft tissue is described from the Cretaceous Burmese amber by Xing et al. (2017).[235]
  • Description of the fossilized outer cones, rods, oil droplets and pigment epithelium preserved in an eye of an enantiornithine specimen from the Lower Cretaceous of China, and a study on their implications for inferring enantiornithine vision, is published by Tanaka et al. (2017).[236]
  • A new specimen of the Early Cretaceous species Archaeorhynchus spathula is described by Wang and Zhou (2017).[237]
  • An isolated tibiotarsus of a bird morphologically similar to Ichthyornis is described from the Late Cretaceous (Cenomanian) of Russia by Zelenkov, Averianov & Popov (2017).[238]
  • Description of new remains of hesperornithids from several Cretaceous (Campanian) localities of the Lower Volga Region (European Russia) and a revision of the systematics of Eurasian hesperornithiforms is published by Zelenkov, Panteleyev & Yarkov (2017).[239]
  • Delphine Angst et al. find Gargantuavis philoinos in Spain, in Laño.[240]
  • A study on the species richness, taxonomic diversity and presumed ecological characteristics of the Eocene avifauna of the Messel fossil site is published by Mayr (2017).[241]
  • Revision of bird fauna from the Miocene locality of Rudabànya (Hungary) is published by Zelenkov (2017).[242]
  • Worthy et al. (2017) provide an overview of the recent advances in avian palaeobiology in New Zealand.[243]
  • A review of the Neogene birds of continental Asia is provided by Zelenkov (2017).[244]
  • Passerine and anatid fossils are described from the Miocene Tsurevsky Formation (Krasnodar Krai, Russia) by Zelenkov (2017), representing the earliest known Miocene birds from European Russia reported so far.[245]
  • A study on the isolated contour feather from the Eocene Fur Formation (Denmark), indicating presence of melanosomes similar in size and morphology to those of extant parrots, is published by Gren et al. (2017).[246]
  • A study on the nuclear genome fragments recovered from extinct elephant birds and a reconstruction of the phylogenomic timetree for the group Palaeognathae is published by Yonezawa et al. (2017).[247]
  • Ancient DNA, including mitochondrial DNA and nuclear DNA, is recovered from elephant bird eggshell by Grealy et al. (2017).[248]
  • Results of palaeontological surveys of King and Flinders Islands (Australia) undertaken in 2014 and 2015, searching for remains of the King Island emu, are presented by Hume et al. (2017).[249]
  • A revision of ratite museum fossil specimens from Argentina, indicating presence of non-rheid ratites in South America during Paleogene and Miocene, is published by Agnolin (2017).[250]
  • A study on ancient DNA recovered from late Pleistocene ratite eggshell samples from India is published by Jain et al. (2017), providing the first molecular evidence for the presence of ostriches in India.[251]
  • A study on the phylogenetic relationships of fossil birds, focusing on resolving the relationships of giant flightless members of Galloanseres, is published by Worthy et al. (2017).[252]
  • A study on the phylogenetic relationships of Vegavis iaai, Polarornis gregorii and Australornis lovei is published by Agnolín et al. (2017), who name a new anseriform family Vegaviidae.[253]
  • New skeletal elements (limb bones) of Garganornis ballmanni are described from the Miocene of Italy by Pavia et al. (2017).[254]
  • A tarsometatarsus of a member of the anseriform genus Paranyroca is described from the late Oligocene/early Miocene of the Saint-Gérand-le-Puy area (France) by Mayr & Smith (2017), representing the first known record of the genus from the Old World.[255]
  • A study establishing criteria for assessing presence or absence of flight ability in fossil anatids, as well as assessing flight abilities of fossil anatids based on the constructed rules, is published by Watanabe (2017).[256]
  • Rawlence et al. (2017) interpret extinct New Zealand swan as a member of a distinct swan lineage divergent from modern black swan, based on ancient DNA and osteological data.[257]
  • The first Cenozoic avian body fossil from the Korean Peninsula (partial tibiotarsus of a member of the clade Galloanserae more closely related to galliforms than to anseriforms) is described from the Miocene Bukpyeong Formation (South Korea) by Park & Park (2017).[258]
  • Two parallel trackways produced by a guineafowl or a member of the family Phasianidae, rendered visible by the layer of biofilm, are described from the Pleistocene Waenhuiskrans Formation (South Africa) by Helm et al. (2017), representing the longest identified fossil avian trackways in the region.[259]
  • A revision of non-passeriform birds belonging to the group Neoaves known from the Miocene locality of Polgárdi (Hungary) is published by Zelenkov (2017).[260]
  • A study on the bone histology of the dodo (Raphus cucullatus) and its implications for the life history of members of this species is published by Angst et al. (2017).[261]
  • A study estimating the mass of the dodo is published by van Heteren et al. (2017).[262]
  • A study on the genetic diversity of the passenger pigeons based on the analysis of mitochondrial and nuclear genomes of members of the species is published by Murray et al. (2017).[263]
  • A study on lipid residues recovered from the uropygial gland of an early Eocene bird (possibly a messelirrisorid or a close relative of the family) from the Messel pit (Germany) is published by O'Reilly et al. (2017).[264]
  • A study on the diet and trophic position of the South Island adzebill (Aptornis defossor) as indicated by bone stable isotope data is published by Wood et al. (2017).[265]
  • Partial tibiotarsus of a member of Cariamae belonging or related to the family Ameghinornithidae is described from the Eocene strata in Inner Mongolia (China) correlative to the Irdin Manha Formation by Stidham & Wang (2017).[266]
  • A study on the morphological adaptations linked to substrate preference and locomotory mode in the hindlimbs of phorusrhacids is published by Degrange (2017).[267]
  • Limb elements of a single specimen of a middle-sized terror bird are described from the Miocene of northwestern Argentina by Vezzosi & Noriega (2017), who interpret this specimen as a member of the genus Mesembriornis belonging or related to the species M. milneedwardsi.[268]
  • Restudy of the holotype specimen of the putative Miocene seriema Noriegavis santacrucensis is published by Noriega & Mayr (2017), who reinterpret this specimen as a member of the falconid genus Thegornis of uncertain specific assignment.[269]
  • Fossils of at least eight species of Pleistocene passerines are described from the Liang Bua cave on the island of Flores (Indonesia) by Meijer et al. (2017).[270]
  • A study on the paleoecology of the late Pleistocene populations of the eastern bluebird (Sialia sialis) and the Hispaniolan crossbill (Loxia megaplaga) from the Bahamian island of Abaco is published by Steadman & Franklin (2017).[271][272][273]
  • Darter fossils are described from the late Pliocene Tatrot Formation (India) by Stidham et al. (2017).[274]
  • Incomplete skull of a bald ibis related to the southern bald ibis is described from the Bolt's Farm Cave System (Cradle of Humankind, Pliocene of South Africa) by Pavia et al. (2017).[275]
  • Leg bones of a penguin comparable in size to Anthropornis nordenskjoeldi are described from the mid-Paleocene Waipara Greensand (New Zealand) by Mayr, De Pietri & Scofield (2017).[276]
  • An incomplete left tarsometatarsus of a penguin from the Late Eocene La Meseta Formation of Seymour Island, Antarctica is described by Jadwiszczak & Mörs, (2017). they report on a recently collected large-sized tarsometatarsus from this formation that represents a new morphotype. They are convinced that the morphotype corresponds to a new species, but the material is too scarce for a taxonomic act.[277]
  • A new skull of a medium-sized penguin is described from the late Eocene Submeseta Formation of Seymour Island, Antarctica by Haidr & Acosta Hospitaleche (2017), who also study the differences in proportions between skull and postcranial skeletons of Eocene and modern penguins.[278]
  • Description of new penguin fossils from different levels of the Eocene La Meseta and Submeseta formations, including the most complete beak of a penguin from Antarctica, and a study on the dietary habits of these penguins as indicated by the morphology of the mandibles and maxillary remains, is published by Haidr & Acosta Hospitaleche (2017).[279]
  • A study on the locomotion of Brontornis and the phorusrhacids Paraphysornis and Kelenken, identifying them as adapted for slow walking rather than fast running locomotion, and evaluating possible ecology of these taxa, is published by Angst & Chinsamy (2017).[280]
  • A study on the fossil bird remains from the Pliocene locality of Kanapoi (Kenya), indicating presence of many aquatic birds, is published online by Field (2017).[281]
  • Description of Holocene bird remains from the archaeological site at Tula Village (Tutuila, American Samoa) is published by Tennyson, Rieth & Cochrane (2017).[282]

New taxa

More information Name, Novelty ...
Remove ads

Pterosaurs

Summarize
Perspective

Research

  • A study on the body size evolution in pterosaurs, especially on whether Bergmann's rule can be shown to apply to pterosaurs, is published by Villalobos et al. (2017).[306]
  • A study on the occurrence of competition and ecological separation between pterosaurs and birds as indicated by analyses of functionally equivalent morphological characters of lower jaw, fore- and hindlimbs is published by Chan (2017).[307]
  • A study on the differences between soft-tissue structure and attachments articulating skeletal joints of Rhamphorhynchus and Pterodactylus as indicated by known skeletons of members of both taxa is published by Beardmore, Lawlor & Hone (2017).[308]
  • Pterosaur manus tracks are described from the Late Cretaceous of Morocco by Masrour et al. (2017).[309]
  • A study on the systematic relationships of Parapsicephalus purdoni is published by O'Sullivan & Martill (2017).[310]
  • A study on the differences in the anatomy of the skull crests in wukongopterid pterosaur specimens and its implications for the function of these crests is published by Cheng et al. (2017).[311]
  • New specimen of Kunpengopterus sinensis, providing new information on the anatomy of members of the species, is described from the Upper Jurassic Tiaojishan Formation (China) by Cheng et al. (2017).[312]
  • An accumulation of hundreds of eggs (some of which contain embryonic remains) of Hamipterus tianshanensis is reported from the Lower Cretaceous of China by Wang et al. (2017), who interpret the finding as evidence of colonial nesting and potential nesting site fidelity in pterosaurs, and argue that the hatchlings might have been flightless and not as precocial as previously thought.[313]
  • Isolated teeth belonging to indeterminate members of the clade Anhangueria are described from the Early Cretaceous (Albian) Griman Creek Formation (Australia) by Brougham, Smith & Bell (2017).[314]
  • A study on the morphological diversity of the skulls of anhanguerids from the Lower Cretaceous Romualdo Formation (Brazil) and its implications for the taxonomy of members of the genus Anhanguera is published by Pinheiro & Rodrigues (2017).[315]
  • A redescription of the holotype specimen of Dawndraco kanzai is published by Martin-Silverstone et al. (2017), who consider this species to be a junior synonym of Pteranodon sternbergi.[316][317][318]
  • A redescription of the holotype specimen of Jidapterus edentus and a study on the taxonomic validity, phylogenetic relationships and paleoecology of the species is published by Wu, Zhou & Andres (2017).[319]
  • Funston, Martin-Silverstone & Currie (2017) describe a fossil specimen from the Upper Cretaceous (Campanian) Dinosaur Park Formation (Canada), interpreted as a partial pterosaur pelvis (tentatively referred to Azhdarchidae), which if confirmed would represent the first described pelvic material from a North American azhdarchid;[320] however, this specimen is subsequently reinterpreted as a broken tyrannosaurid squamosal.[321]
  • A description of a neck vertebra of a probable member of the genus Hatzegopteryx recovered from the Late Cretaceous (Maastrichtian) Sebeş Formation (Romania) and a study on the implications of the vertebra's anatomy for the neck length and ecology of Hatzegopteryx is published by Naish & Witton (2017).[322]
  • Fragments of neck vertebra of a gigantic pterosaur are described from the Upper Cretaceous Nemegt Formation (Mongolia) by Tsuihiji et al. (2017).[323]
  • Leal et al. (2017) describe a chaoyangopterid pterosaur based on remains found in the Crato Formation (Brazil), providing further support for the presence of these types of pterosaurs in the Early Cretaceous of Brazil. The phylogenetic position of Lacusovagus is also reviewed in this study.[324]

New taxa

More information Name, Novelty ...
Remove ads

Other archosaurs

Research

New taxa

More information Name, Novelty ...
Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads