Top Qs
Chronologie
Chat
Contexte

Falcon 9

lanceur moyen à lourd partiellement réutilisable développé par SpaceX De Wikipédia, l'encyclopédie libre

Falcon 9
Remove ads

La Falcon 9 est un lanceur spatial moyen/lourd partiellement réutilisable développé par la société américaine SpaceX dont la dernière version peut placer une charge utile de 22,8 tonnes (métrique) en orbite basse ou de 8,3 tonnes en orbite de transfert géostationnaire. Le premier tir a eu lieu le . L'objectif de SpaceX est de fournir un lanceur permettant d'abaisser fortement le prix des mises en orbite grâce à des coûts de fabrication modérés, et à la récupération et la réutilisation des étages. SpaceX a signé en un contrat avec la National Aeronautics and Space Administration (NASA) pour assurer une partie du ravitaillement de la Station spatiale internationale (ISS) jusqu'à 2015 à l'aide du lanceur Falcon 9 et du cargo spatial SpaceX Dragon, contrat qui fut ensuite prolongé jusqu'en 2024. Le lanceur a également été un des candidats pour la relève des équipages de la Station spatiale internationale qui ont été transportés le et le dans une version habitée du vaisseau cargo Dragon nommée Crew Dragon.

Faits en bref Données générales, Pays d’origine ...
Thumb
Schéma comparant les différentes versions des Falcon 9 développés par SpaceX

Le lanceur Falcon comprend deux étages propulsés par des moteurs Merlin et brûlant un mélange d'oxygène liquide et de RP-1. La version utilisée initialement (V1.0) ne permettant pas de tenir les performances annoncées, une version 1.1 utilisant des moteurs beaucoup plus puissants et un premier étage allongé a effectué son premier vol le . SpaceX utilise par ailleurs une version réutilisable du premier étage et a développé une version Heavy (lourde) pouvant placer jusqu'à 63,8 tonnes en orbite basse. La Falcon 9 est le premier lanceur de cette puissance développé par un opérateur privé. Une autre première remarquable est que tous les composants (avionique, moteur) ont été conçus spécifiquement par SpaceX, c'est-à-dire selon la stratégie dite d'intégration verticale, alors que les sociétés œuvrant dans le secteur se contentent généralement d'assembler des composants existants.

Remove ads

Contexte

Résumé
Contexte

Elon Musk, fondateur de SpaceX et principal actionnaire, crée sa société avec l'objectif de faciliter l'accès à l'espace en s'attaquant à la principale limitation : le coût de lancement. En 2004, Musk annonce devant le Sénat américain un coût de lancement en orbite basse de 9 000 $ par kg pour le lanceur léger Falcon 1 et de 3 000 $ pour le lanceur moyen Falcon 5 remplacé depuis par le Falcon 9. Il déclare alors pouvoir abaisser à terme ce coût à 1 000 $ par kg[1]. Pour réduire le prix de mise en orbite, SpaceX prévoit de développer des lanceurs réutilisables qui mettent en œuvre des technologies à la fois modernes, éprouvées et simples. SpaceX met en avant également la taille réduite et l'organisation optimisée de la société qui contribue à accroître son efficacité.

SpaceX réussit à fortement abaisser les coûts de fabrication à travers deux choix qui le démarquent de ses concurrents. La société opte pour un dispositif industriel intégré verticalement en concevant et fabriquant en interne 70 % des composants de son lanceur sur un site unique à Hawthorne (Californie) alors que ses principaux concurrents confient notamment le développement de la propulsion aux sociétés de motoristes. Le lanceur est désoptimisé c'est-à-dire que, pour limiter les coûts, le constructeur opte pour des techniques simples quitte à dégrader les performances (surenrichissement en kérosène pour réduire l'échauffement des moteurs, conception des étages identiques)[2]. Toutefois au fur et à mesure des développements, SpaceX doit faire marche arrière sur certaines des solutions techniques simplificatrices retenues initialement pour abaisser son coût. Ainsi les moteurs qui devaient initialement être de conception simple (revêtement ablatif, moteurs quasi identiques), ont été modifiés pour parvenir à atteindre les performances attendues et sont aujourd'hui sans doute beaucoup plus coûteux : refroidissement par circulation de kérosène, tuyère extensible pour le second étage.

Grâce au prix attractif obtenu mais également aux déboires des constructeurs russes confrontés à des problèmes de fiabilité (Sea Launch, Proton), le succès commercial de la fusée Falcon 9 débute dès le premier vol réussi du lanceur. Les contrats de lancements obtenus bouleversent largement le marché très étroit des lancements commerciaux mais également institutionnels américains en obligeant ses principaux concurrents à revoir en profondeur leur offre. Les européens mettent en chantier un nouveau lanceur Ariane 6 qui se veut plus attractif sur le plan financier. Le principal concurrent américain ULA, attaqué sur le marché des lancements institutionnels et mis en difficulté par les tensions politiques entre la Russie et les États-Unis qui entraînent une menace d'embargo sur la motorisation russe qu'utilise l'Atlas V, lance le développement de la fusée Vulcan pour remplacer l'Atlas et la Delta IV.

La société atteint plusieurs des objectifs initiaux qu'elle s'était fixée en réussissant en la première récupération du premier étage du Falcon 9, et en la première réutilisation d'un autre premier étage ayant déjà volé précédemment. Mais on ne dispose pas d'éléments fiables permettant de démontrer la viabilité économique de cette technique qui pénalise la charge utile (la capacité GTO est diminuée de 33 % dans la version récupérable du lanceur[3]), réduit l'effet d'échelle au niveau de la production des moteurs et entraîne des surcoûts liés aux dispositifs de récupération et de remise en état.

Remove ads

Historique

Résumé
Contexte
Thumb
Une Falcon v1.0 dans le hangar d'assemblage de Cape Canaveral.
Thumb
Une Falcon v1.0 est transportée sur son chariot érecteur jusqu'au pas de tir.

Genèse (2005)

En 2005, la société SpaceX propose une gamme de lanceurs composée du lanceur léger Falcon 1 et du lanceur moyen Falcon 5. En , la société ajoute à sa gamme le Falcon 9 doté d'un premier étage nettement plus puissant propulsé par neuf moteurs Merlin au lieu de cinq sur le Falcon 5. Le premier vol est annoncé pour le deuxième trimestre 2007. Les deux lanceurs moyens doivent utiliser la même structure pour le premier étage mais le Falcon 5 est lancé avec des réservoirs partiellement remplis. Le Falcon 9 est initialement censé être propulsé par des Merlin 1B mais ce modèle est abandonné pour le Merlin 1C plus sophistiqué car refroidi par ses ergols, mais qui doit atteindre 556 kN de poussée au sol en fin de développement contre 378 kN pour le Merlin 1B. Le Falcon 5 disparaît par la suite du catalogue SpaceX[4].

Sélection dans le cadre du programme COTS de la NASA (2006)

En , dans le cadre du programme COTS destiné à assurer le remplacement partiel de la navette spatiale américaine, la NASA sélectionne deux sociétés, dont SpaceX, pour le ravitaillement de la Station spatiale internationale. SpaceX a répondu à l'appel d'offres en proposant d'utiliser son lanceur Falcon 9 pour lancer le cargo spatial Dragon développé également par SpaceX. La NASA passe contrat avec la société SpaceX en pour le lancement de 12 vaisseaux d'ici 2015 qui doivent amener une masse totale de 20 tonnes au minimum à la station spatiale contre une rémunération de 1,6 milliard $. Les clauses du contrat prévoient qu'il peut être étendu jusqu'à concurrence d'un montant de 3,1 milliards $[5]. SpaceX doit effectuer trois vols de qualification de difficulté croissante pour démontrer sa capacité à réaliser cette mission. Puis 12 vols de ravitaillement sont planifiés jusqu'en 2015.

Développement (2006-2010)

Début 2007, SpaceX annonce l'achèvement du premier réservoir du premier étage du lanceur[6]. Le premier test d'un premier étage avec ses 9 moteurs est réalisé le premier août 2008[7]. En , les neuf moteurs sont testés avec succès pour une durée équivalente à celle d'un tir réel (178 secondes)[8]. En , le premier vol de démonstration du Falcon 9 avec le vaisseau Dragon est repoussé de 6 mois à la fin du premier trimestre 2008[9]. Le lanceur est pour la première fois assemblé en position verticale en à Cap Canaveral. En , un premier étage destiné à être lancé effectue un test réussi sur le banc d'essais de SpaceX situé à McGregor dans le Texas. Le lanceur complet est convoyé vers son site de lancement en . SpaceX prévoit à l'époque un lancement le avec une marge d'erreur de 1 à 3 mois liée aux incertitudes relatives aux tests d'intégration[10]. Le second étage est testé pour la première fois en . Le , SpaceX procède à un essai statique de 3,5 secondes du lanceur assemblé.

Vol inaugural (2010)

Thumb
Premier tir du lanceur le .
Thumb
Lancement du premier exemplaire de la V1.1 depuis Vandenberg ().

Après deux interruptions dans le compte à rebours dont un allumage du premier étage avorté, le premier lancement d'une fusée Falcon 9 a eu lieu le depuis la base de lancement de Cap Canaveral. La charge utile du lanceur était constituée par une maquette du cargo spatial SpaceX Dragon, nommée Dragon Spacecraft Qualification Unit. Malgré un roulis important non prévu, le second étage solidaire de sa charge utile s'est placé sur une orbite à peu près circulaire de 250 km avec une inclinaison de 34,5° correspondant presque parfaitement à l'objectif fixé (moins de 1 % de différence). Le premier étage, dont la réutilisation doit contribuer à la réduction du coût de lancement, s'est brisé en retombant[11],[12].

Qualification pour le programme COTS (2010-2012)

La qualification pour le programme COTS, qui constitue la majorité du carnet de commande du lanceur, est un enjeu majeur pour SpaceX. Afin de qualifier le lanceur et le vaisseau SpaceX Dragon pour le ravitaillement de la Station spatiale internationale, trois vols de difficulté croissante doivent être réalisés avec succès. Fin , SpaceX, qui a reçu 350 millions $ d'avances de la part de la NASA, a annoncé à l'agence spatiale américaine qu'elle ne prévoyait plus qu'un seul vol de démonstration en . Le deuxième vol, nécessitant des développements complémentaires, est désormais prévu pour tandis que le troisième vol serait réalisé en . Or, après l'arrêt de la navette spatiale fin 2010, le lanceur va jouer un rôle crucial dans le maintien du potentiel de la station spatiale : il n'existe plus aucune marge au cas où des problèmes de mise au point surgiraient. Par ailleurs, la NASA a décidé de ne plus utiliser les cargos russes Progress pour le ravitaillement de la partie américaine de la station à compter de fin 2011. Un report supplémentaire dans la date de disponibilité opérationnelle des cargos du programme COTS contraindrait à réduire l'activité de la station spatiale et à la placer en mode « survie » avec un équipage réduit et une activité scientifique limitée comme cela s'était produit après l'accident de la navette spatiale Columbia.

Après plusieurs reports le premier vol de qualification a lieu le . Le lanceur Falcon 9 a placé le cargo spatial SpaceX Dragon sur une orbite circulaire de 288 km avec une inclinaison de 34,53 degrés. Les communications ont été testées et des manœuvres de changement d'orbite et de contrôle d'orientation ont été effectuées par le vaisseau à l'aide de ses moteurs. Après près de 3 heures passées en orbite, la capsule a effectué une rentrée atmosphérique et a été récupérée après son amerrissage dans l'océan Pacifique qui s'est fait avec une précision de 800 mètres par rapport au point visé[13]. SpaceX est devenue la première société privée capable de lancer et de récupérer une capsule spatiale.

Le deuxième et dernier vol de qualification a lieu le . Initialement un troisième vol de qualification était programmé mais, en , la NASA a validé la proposition de SpaceX de fusionner les objectifs des deux missions. Le vol doit donc démontrer à la fois la capacité du vaisseau cargo Dragon à manœuvrer en toute sécurité à proximité de la station spatiale et effectuer un premier test d’amarrage. Le lanceur Falcon 9 emporte une capsule Dragon contenant 521 kilos de fret à destination de la Station spatiale internationale. Le 25 mai, la capsule Dragon est amarrée à la station spatiale et le vaisseau est déchargé de sa marchandise par l'équipage. Six jours plus tard, le vaisseau qui a été chargé avec 625 kg de matériel (dont les résultats d'un certain nombre d'expériences) à ramener sur Terre est désamarré et après avoir manœuvré entame sa rentrée atmosphérique. Il amerrit le à environ 900 km de la côte californienne et est récupéré avec succès avec son contenu par une petite flottille affrétée par SpaceX. Ce vol conclut la phase de certification de l'ensemble Falcon 9/Dragon pour le programme COTS[14].

Les premiers vols opérationnels (2012-2013)

À la suite des vols de qualification, le lanceur entame son premier vol opérationnel (CRS-1) destiné à ravitailler la Station spatiale internationale . Le lanceur emporte une capsule Dragon contenant 905 kilos de fret à destination de la Station spatiale internationale ainsi qu'un prototype de satellite Orbcomm de seconde génération d'une masse de 150 kg[15]. 90 secondes après le décollage, un des neuf moteurs du premier étage est victime d'une défaillance : les investigations postérieures réalisées par une commission mixte de SpaceX et de la NASA montreront qu'une brèche s'est ouverte dans la chambre de combustion et qu'un jet de gaz brulant en est sorti et a sectionné le conduit de l'alimentation principale en ergol déclenchant un incendie. L'ordinateur de vol a alors arrêté le moteur et le lanceur a poursuivi son vol en utilisant ses 8 autres moteurs[16],[17]. L'orbite visée est atteinte mais SpaceX ne procède pas au réallumage du second étage qui aurait permis de placer la charge secondaire, le minisatellite de démonstration Orbcomm-G2, sur son orbite de destination selon un accord passé avec la NASA et stipulant qu'au cas où les réserves de carburant et d'oxygène liquide disponibles n'assureraient pas l'atteinte de l'orbite visée avec une probabilité supérieure à 99 %, le réallumage du second étage n'aurait pas lieu (le second étage disposait du carburant nécessaire mais les probabilités que l'oxygène liquide soit disponible en quantité suffisante n'étaient que de 95 %). Le minisatellite est donc placé sur une orbite non opérationnelle et sera détruit en rentrant dans l'atmosphère quatre jours plus tard[18]. Mais la mission principale se déroule sans accroc, la capsule Dragon après avoir manœuvré est amarrée à la station spatiale le et est déchargée. 905 kg de fret sont chargés dans le vaisseau pour être ramenés sur Terre[15]. Le , le vaisseau est détaché de la station et après sa rentrée atmosphérique effectue un amerrissage dans l'océan Pacifique. Les équipes de SpaceX et de la NASA parviennent à récupérer le vaisseau et son contenu sans difficultés[19].

La version V1.1 du lanceur introduit de profonds changements dans la configuration du lanceur avec notamment une masse accrue de plus de 40 %. Le premier vol de cette version a lieu le , c'est un succès. Toutefois deux objectifs secondaires de ce vol ne sont pas atteints : le moteur du second étage ne peut être rallumé après la séparation de la charge utile et placer les satellites en orbite géostationnaire dans le cadre du vol suivant ; le premier étage ne se rallume pas après la séparation pour stabiliser ses mouvements durant sa chute et permettre sa récupération[20],[21]. Le , le deuxième vol du lanceur dans sa version 1.1 emporte un satellite de télécommunications vers l'orbite géostationnaire. Cette fois le moteur du second étage est remis à feu pour l'insertion du satellite sur une orbite elliptique haute sans rencontrer de problème[22].

Défaillance du lanceur lors de la mission CRS-7 ()

Thumb
Premier atterrissage réussi sur la Landing Zone 1 le .

Lors du lancement de la mission de ravitaillement de la station spatiale internationale CRS-7 le , le lanceur est détruit après 139 secondes de vol. Une surpression dans le réservoir d'oxygène liquide du second étage fait exploser celui-ci alors que le premier étage fonctionnait normalement. Ce dernier continue à fonctionner durant plusieurs secondes avant de s'auto-détruire. Le capsule Dragon est éjectée par l'explosion du second étage mais ne disposant pas des instructions permettant de déployer ses parachutes dans ce contexte elle est détruite en percutant à grande vitesse l'océan. Le vaisseau cargo contenait 1,8 tonnes de ravitaillement ainsi qu'un adaptateur dans la partie non pressurisée qui devait permettre l'amarrage des futurs vaisseaux privés à la station spatiale[23],[24].

Mi juillet, Elon Musk annonce les résultats préliminaires des investigations effectuées après l'accident pour déterminer l'origine de la défaillance. L'origine de celle-ci serait liée à l'une des bouteilles d'hélium sous pression situées à l'intérieur du réservoir d'oxygène. De manière conventionnelle sur un lanceur, ce gaz est progressivement libéré dans le réservoir lorsque le moteur de l'étage fonctionne pour maintenir sous pression le réservoir au fur et à mesure que l'oxygène est brulé. L'hélium remplit deux objectifs : préserver l'intégrité de la structure du réservoir et refouler l'oxygène restant vers le moteur. La bouteille est maintenue en position par des poutrelles en acier fixées par ailleurs à la paroi du réservoir. Une de ces poutrelles aurait cédé alors que le lanceur accélérait à plus de g. La bouteille libérée aurait largué accidentellement de l'hélium mettant en surpression le réservoir, provoquant son éventrement puis la défaillance du lanceur. Ce diagnostic devait être confirmé au cours de l'été[23],[24]. Le lanceur revolera avec succès le .

Premier vol de la version v1.1 "Full Thrust" ()

Le vol du inaugure une nouvelle version plus puissante du lanceur baptisée "Full Thrust" (FT). C'est le premier lancement depuis l'échec de et ce sera également le premier lancement qui verra la récupération réussie du premier étage du lanceur. Au cours de huit mois qui suivent (de janvier à ) le Falcon 9 FT est utilisé à sept reprises avec succès pour des vols commerciaux (satellites de télécommunications en orbite géostationnaire, satellite d'observation de la Terre en orbite héliosynchrone Jason 3).

Explosion au sol du lanceur ()

Le , un essai de mise à feu des moteurs du lanceur Falcon 9 FT no 29, dont le lancement est planifié deux jours plus tard, est préparé sur le pas de tir du complexe de lancement SLC-40. Pour ce test effectué avant chaque lancement, le lanceur est placé en position de tir, les réservoirs de ses deux étages sont remplis et la charge utile est fixée au sommet du lanceur. Cette procédure permet de tester l'ensemble dans sa configuration au décollage ce qui raccourcit la phase de lancement proprement dite. À 13 h 7 TU, alors que le plein d'ergols est en cours, une anomalie déclenche l'explosion du lanceur. Le lanceur ainsi que le satellite de télécommunications israélien Amos-6 de 5,4 tonnes et d'une valeur de 200 millions $, sont détruits, plaçant son opérateur Spacecom dans une situation financière délicate. Le complexe de lancement est en partie endommagé et est mis hors d'état de fonctionner[25].

La situation est également délicate pour la société SpaceX qui a un carnet de commandes très volumineux et qui souffre déjà de retards importants par rapport au calendrier de lancement sur lequel il s'est engagé envers ses clients. Iridium qui a confié le lancement de sa constellation de satellites à SpaceX (une soixantaine de satellites lancés par grappe de 10 sur une période de 12 mois), est particulièrement touché. Comme dans tous les cas de perte du lanceur, l'incident doit être compris et l'anomalie éventuelle doit être corrigée avant toute reprise des vols. Malgré les difficultés auxquelles se heurte l'enquête, les dirigeants de SpaceX annoncent, quelques semaines après la destruction du lanceur, qu'une reprise est envisageable dès novembre. Le complexe de tir est en partie détruit et ne sera pas remis en état tout de suite mais SpaceX s'apprête à inaugurer en novembre un second pas de tir en Floride, le SLC-39A[26].

La recherche de l'origine de l'anomalie se révèle difficile malgré la présence de nombreux capteurs qui transmettaient des données sur le comportement du lanceur durant le plein d'ergols. Comme en , on découvre que l'explosion a pris sa source dans le réservoir d'oxygène du deuxième étage. L'hypothèse la plus probable est qu'une sphère remplie d'hélium, gaz chargé de pressuriser les ergols, a été victime d'une rupture de sa structure. La biellette tenant le réservoir d'hélium à l'origine de la perte du lanceur en est, a priori, mise hors de cause[27].

Une explication avancée, qui reste à confirmer, est que la rupture aurait pu être provoquée par un différentiel de température trop important entre l'hélium injecté dans le réservoir COPV (en anglais : Composite-Overwrapped Pressure Vessel) et l'oxygène liquide en cours de remplissage et qui était en train de submerger celui-ci. Le COPV est un réservoir de forme cylindrique haut de 1,5 mètre et d'un diamètre de 60 cm. qui doit résister à des contraintes structurelles et thermiques particulièrement importantes (pression interne de 350 bars et différentiels de température importants avec une température externe de quelques dizaines de kelvin liée au choix de SpaceX d'utiliser de l'oxygène liquide surrefroidi). SpaceX a choisi de réaliser la structure du réservoir en composite carbone bobiné pour gagner du poids. La face interne est recouverte d'une mince couche métallique pour maintenir l'étanchéité. Le recours pour cet usage à une structure à base de composite carbone au comportement mal maitrisé dans les conditions imposées par les procédures de SpaceX (remplissage rapide sans refroidissement au préalable de la structure) constitue un choix inédit pour un lanceur qui pourrait être à l'origine de la défaillance[28]

Initialement prévu le , le premier lancement depuis l'explosion est reporté dans le courant du mois de , annonce la société d'Elon Musk. En cause, l'autorisation manquante de l'Administration fédérale de l'aviation (FAA) qui gère également la réglementation en matière de lancements spatiaux commerciaux. Avant de donner son feu vert à la reprise de l'activité de SpaceX, la FAA attend les conclusions de l'enquête que mènent SpaceX, la Nasa et l'U.S. Air Force. Ce report des opérations de vol, s'il n'est pas inquiétant, ne fait pas les affaires d'Inmarsat et HellasSat. Les deux sociétés ont décidé de renoncer à utiliser le Falcon 9 de SpaceX pour la mise en orbite du satellite Inmarsat S-band qui embarque la charge utile Hellas-Sat 3, et d'activer une option de lancement auprès d'Arianespace : le satellite a été mis en orbite par le lanceur lourd Ariane 5 depuis le Centre spatial guyanais, le [29],[30].

Mise au point de la récupération du premier étage du lanceur

Lors des deux premiers tirs du lanceur en 2010, une rentrée atmosphérique du premier étage suivie de son amerrissage sous parachutes sont tentés mais se soldent par des échecs. SpaceX abandonne alors cette méthode et se focalise sur la récupération propulsive en concevant le modèle 1.1 du lanceur. Son premier vol a lieu lors du sixième tir du lanceur en septembre 2013. Lors de ce vol, le premier test d'amerrissage contrôlé est effectué, avec pour objectif de tester les phases de rentrée atmosphérique, freinage et amerrissage à vitesse réduite d'un premier étage équipé pour sa récupération. Durant ce premier test, le propulseur unique impliqué dans la phase de freinage ne parvient pas à stabiliser le lanceur. Mais lors du second et du troisième test effectués en avril et en , SpaceX parvient à effectuer deux amerrissages en douceur du premier étage muni de jambes d'atterrissage déployables. Ces étages ne survivent cependant pas à leur basculement dans l'océan et ne peuvent être récupérés.

Thumb
Stabilisateurs cellulaires du premier étage de Falcon 9 juste après leur déploiement.

Une première tentative d'atterrissage sur une barge océanique autonome a eu lieu le dans le cadre de la mission de ravitaillement de la station spatiale internationale CRS-5 mais un manque de liquide hydraulique actionnant les ailerons des stabilisateurs cellulaires durant les dernières secondes de l'atterrissage provoque l'échec de la manœuvre.

Une nouvelle tentative est effectuée le . Le lanceur, emportant 50 % de liquide hydraulique supplémentaire, s'envole avec succès. Le premier étage se sépare après presque 3 minutes de vol et démarre son retour autonome. Cependant, le mauvais temps (vagues de 10 mètres) dans la zone de récupération n'a pas permis de déployer la plateforme d'atterrissage. Le premier étage a donc "amerri en douceur" à l'endroit prévu.

Lors de la troisième tentative effectuée le à l'occasion de la mission de ravitaillement de la station spatiale internationale CRS-6, le premier étage parvient à se poser sur la plateforme mais une trop grande vitesse latérale et horizontale, due à une vanne défaillante, brise deux des quatre jambes d'atterrissage et le fait basculer sur la barge avant d'exploser.

La première récupération réussie du premier étage a eu lieu le et met en œuvre la première utilisation de la version Full Thrust du lanceur[31]. Le lanceur place en orbite onze satellites de télécommunications de la société Orbcomm. Le premier étage effectue pour la première fois un atterrissage réussi à Cap Canaveral[32],[33]. Alors que lors des essais précédents, l'atterrissage avait eu lieu sur une plateforme au large de la Floride, l'étage revient se poser cette fois sur un ancien pas de tir reconverti et rebaptisé Landing Zone 1, tout proche du site de lancement. L'examen soigneux du lanceur récupéré se fait en position horizontale dans un bâtiment construit à proximité du pas de tir 39-A au centre spatial Kennedy. Le , soit 10 jours après l'atterrissage, Elon Musk annonce que les systèmes paraissent en bon état[34]. Le , le lanceur est positionné verticalement sur le pas de tir 40 de Cap Canaveral pour un court essai des moteurs. Les données révélent un lanceur en bon état en dehors du moteur numéro 9 qui présente des variations de puissance[35]. Cela pourrait être lié avec l'ingestion de débris à l'atterrissage, soupçons confirmés par une endoscopie du moteur dans les jours suivants.

Le , SpaceX réussit enfin l'appontage du premier étage de son lanceur sur une barge océanique autonome baptisée Of course I still love you. Ces exploits seront répétés régulièrement lors des lancements qui suivront.

Le à l'occasion de la mission SES-10, SpaceX réutilise pour la première fois un premier étage ayant précédemment servi à mettre en orbite le vaisseau Dragon lors de la mission CRS-8[36],[37]. Le premier étage est de nouveau récupéré sur la barge autonome Of course I still love you.

Viabilité économique

Davantage d’informations Charge utile, Lanceur ...

L'industrie spatiale émet des doutes sur le modèle économique de la réutilisation des lanceurs. La navette spatiale avait déjà échoué à réduire les coûts par la réutilisation de la navette elle-même (plusieurs mois de remise en état entre les lancements) et des boosters latéraux du premier étage qui étaient récupérés dans l'eau salée (très corrosive pour les moteurs) après leur amerrissage.

Peu après le succès d'atterrissage du lanceur Falcon 9, ses concurrents critiquaient ce choix stratégique[45]. Les éléments soulevant des questions sont :

  • la perte de rendement due à la nécessité de garder des réserves de carburant pour l'atterrissage ;
  • la réduction des économies d'échelles liée à la baisse du volume de production de lanceurs neufs ;
  • les coûts de remise en état du lanceur ;
  • la commercialisation plus difficile de lanceurs usagés (fiabilité à déterminer).
Remove ads

Caractéristiques techniques

Résumé
Contexte

Le Falcon 9 est un lanceur de capacité moyenne dont trois versions (V1.0, V1.1 et Full Thrust) de puissance croissante sont mises en service respectivement en 2010, 2013 et 2015. La réutilisation du premier étage est mise au point en parallèle avec une première récupération réussie en . Le lanceur est conçu pour que sa fiabilité soit compatible avec les exigences de la NASA en matière de lancements d'équipage.

Falcon 9 v1.0

Thumb
Le premier étage avec sa baie de propulsion (V1.0).

La fusée dans sa version initiale (1.0) avec sa charge utile est haute de 55 mètres, a un diamètre de 3,6 mètres (hors coiffe) et pèse 333 tonnes. Tous les composants (avionique, moteurs, étages, jupe inter étages, coiffe) ont été conçus spécifiquement par SpaceX alors que les sociétés œuvrant dans le secteur ne construisent généralement pas les moteurs[46].

Le lanceur comprend deux étages propulsés par des moteurs Merlin brûlant un mélange d'oxygène liquide et de RP-1 (une variante du kérosène). Ces deux ergols constituent le mélange le plus utilisé par les moteurs développés récemment. Moins performant que le mélange oxygène/hydrogène il est finalement moins pénalisant pour un premier étage car il nécessite des réservoirs moins volumineux et il est plus facile à mettre en œuvre. Son choix pour un second étage est par contre sans doute moins optimal. Le premier étage de la fusée est propulsé par 9 moteurs Merlin 1C qui développent en tout 448,9 t de poussée non modulable. La poussée des moteurs du premier étage est orientée grâce à un système de vérins qui déplace certains des moteurs montés sur cardan. L'énergie nécessaire est produite par le kérosène sous pression ce qui, selon le constructeur, simplifie l'architecture du lanceur en supprimant le système hydraulique utilisé traditionnellement[20]. La baie de propulsion avec ses moteurs représentent une masse de 7,7 tonnes soit plus de la moitié de la masse à vide du premier étage[47].

Le second étage, qui est une version raccourcie du premier étage, est propulsé par un seul moteur Merlin-C dans une version optimisée pour le fonctionnement dans le vide : la tuyère comporte une rallonge en alliage de niobium évacuant la chaleur par rayonnement. Le moteur délivre une poussée dans le vide de 44,5 tonnes modulable de 60 à 100 % pour une impulsion spécifique de 342 s[48]. Le moteur est monté sur cardan pour orienter la poussée en lacet et tangage tandis que le déplacement en roulis est réalisé par le biais de la sortie du générateur de gaz. Le temps de fonctionnement nominal sur le Falcon 9 est de 354 secondes[20],[48],[49],[50].

Thumb
Le réservoir du deuxième étage du lanceur. On distingue sur le pourtour une partie du système de séparation avec le premier étage.

Les réservoirs des deux étages sont réalisés en alliage aluminium-lithium (en). La jupe de liaison entre les deux étages, réalisée en matériau composite aluminium-carbone, est longue de 8 mètres pour accueillir la tuyère très allongée du moteur du second étage. Sur sa paroi intérieure se trouvent 4 conteneurs dans lesquels sont logés les parachutes qui doivent permettre la récupération du premier étage[51]. Les réservoirs des deux étages sont mis sous pression par de l'hélium réchauffé. La coiffe a un diamètre de 5,2 mètres et est haute de 13,9 mètres : son diamètre intérieur maximum de 4,6 mètres se maintient sur une hauteur de 6,6 mètres.

L'avionique est commune avec celle du lanceur Falcon 1 également développé par SpaceX. Elle bénéficie d'une triple redondance (ordinateurs de vol et systèmes inertiels) et fait appel à un récepteur GPS pour déterminer le positionnement de l'engin. Les données télémétriques et vidéo sont transmises en bande S par chaque étage individuellement. Le lanceur est, selon son constructeur, capable de remplir sa mission même après l'extinction d'un des neuf moteurs du premier étage. À cet effet des vannes permettent de couper l'alimentation de chaque moteur individuellement ; une cloison en kevlar et nextel (en) protège chaque propulseur de l'explosion éventuelle d'un autre moteur. Selon son constructeur le Falcon 9 1.0 peut placer une charge utile de 10,45 tonnes en orbite basse (200 km) et de 4,5 tonnes en orbite de transfert géostationnaire[4],[20].

La société SpaceX communique de manière souvent vague (masse à vide non communiquée) et éventuellement contradictoire (incohérence entre impulsion spécifique et performances) sur les caractéristiques de ses lanceurs ; par ailleurs celles-ci sont souvent modifiées au cours de développement, contrairement à ce qui se fait traditionnellement dans cette industrie[4].

Falcon 9 v1.1

Thumb
Une Falcon 9 v1.1 équipée de jambes d'atterrissage s'apprête à lancer un vaisseau cargo Dragon.

Les premiers lancements de Falcon 9 utilisent une version du lanceur (baptisée par la suite V1.0) dont les performances, longtemps non précisées, sont sensiblement inférieures à celles annoncées initialement. Pour atteindre les performances, SpaceX a développé une nouvelle version du lanceur dite V 1.1 utilisant des moteurs Merlin nettement plus puissants. Le Merlin 1D développe 65 t de poussée au niveau de la mer contre 35 t pour la version précédente. Ce gain est obtenu en augmentant de 50 % la pression dans la chambre de combustion qui passe à 97 bars. Les 9 moteurs du premier étage ne sont plus organisés en 3 rangées de 3 mais forment un cercle de 8 moteurs, le neuvième se situant au centre. Le premier étage est fortement rallongé pour contenir plus de carburant passant de 29 à 41,5 mètres. La masse du lanceur passe de 318 tonnes à 480 tonnes[52]. La version 1.1 peut placer en orbite basse une charge utile de 13,15 tonnes contre 10,45 tonnes pour la version 1.0 et 5,3 tonnes en orbite géostationnaire contre 4,8 tonnes pour la version 1.0. La version précédente était uniquement utilisée pour lancer le cargo SpaceX Dragon qui ne nécessitait pas de coiffe. La nouvelle version peut placer des satellites en orbite sous une coiffe dont les dimensions (13,1 m de hauteur 5,2 mètres de diamètre) permettent de répondre aux besoins du marché. Le premier vol de cette version a eu lieu le et est un succès. 14 exemplaires de cette version sont lancées, le dernier a lieu le [20],[21],[53].

Falcon 9 Full Thrust (v1.1 FT)

La Falcon 9 v1.1 FT (FT pour Full Thrust, en français : « pleine poussée ») est une version plus puissante de la v1.1. Comme sa désignation l'indique, il s'agit de tirer le maximum du lanceur dont l'architecture est à peu près figée pour permettre le lancement de satellites circulant en orbite géostationnaire tout en conservant suffisamment d'ergols pour permettre la récupération du premier étage et ainsi réduire le coût du lancement, conformément aux objectifs visés par le constructeur. La poussée des moteurs des premier et deuxième étages est accrue, la structure du premier étage est modifiée et le deuxième étage est allongé. La structure de poussée du premier étage est modifiée tandis que l’inter-étage (structure entre les deux étages) est rallongé et renforcé. Le système d'atterrissage utilisé pour la récupération est amélioré : le train d'atterrissage et les panneaux cellulaires qui assurent la stabilité pendant le retour sont modifiés. L'ensemble de ces modifications permettent de faire passer la masse satellisable en orbite de transfert géostationnaire de 4,85 à 5,5 tonnes dans la version réutilisable. Dans la version non réutilisable le lanceur peut placer 22,8 tonnes en orbite basse et 8,3 tonnes en orbite géostationnaire. Le premier vol a lieu le [54].

La Falcon 9 v1.1 FT utilise une version nettement plus puissante des moteurs-fusées Merlin. Le Merlin 1D+ développe une poussée au sol de 845 kN soit un accroissement de 24 % par rapport à la version propulsant la version 1.1. Le Merlin 1DV+ utilisé par le second étage fournit une poussée dans le vide de 935 kN soit une augmentation de 17 %. Pour ne pas allonger la taille du premier étage ce qui réduirait sa rigidité compte tenu du rapport entre sa longueur et son diamètre (41,5 / 3,6 mètres), les ingénieurs de SpaceX ont choisi d'augmenter la densité des ergols. Des installations permettant d'abaisser la température des ergols sont installés sur tous les sites de lancement de SpaceX. La température de l'oxygène liquide est abaissée à −207 °C (10 °C au-dessus du point triple de l'oxygène) en traversant un bain d'azote dans lequel un vide partiel a été effectué, ce qui permet d'accroître la densité de 8 %. Celle du kérosène est abaissée à seulement −7 °C pour éviter d'augmenter la viscosité (le kérosène gèle à −37 °C). La densité est ainsi accrue dans une fourchette de 2,5 à 4 %. Du fait des gains de densité différents il a fallu revoir la taille respective des réservoirs d'oxygène et de kérosène. Le taille du réservoir d'oxygène a été raccourcie tandis que celle du réservoir de kérosène a été allongée. Le deuxième étage, qui ne présente pas les mêmes contraintes concernant ses dimensions a par contre été rallongé de 50 centimètres : la taille du réservoir de kérosène a été allongée sans toucher à celle du réservoir d'oxygène[40].

Falcon 9 Bloc 4

Le Bloc 4 est une version comprise entre la F9 FT et le Bloc 5, les COPVs sont modifiés et leur procédure de remplissage est ralentie afin d'éviter un incident similaire à celui survenu lors de l'explosion sur le pas de tir s'étant produite lors de la mise à feu statique en vue du lancement du satellite Amos-6.

Falcon 9 Bloc 5

La version Bloc 5 est la version finale du lanceur qui ne devrait plus évoluer à l'exception de quelques modifications mineures. Les modifications apportées sont destinées à permettre dix réutilisations sans entretien majeur et, éventuellement, jusqu'à cent réutilisations avec révision et entretien majeur tous les dix vols. La turbopompe des moteurs Merlin est modifiée pour éliminer des fissures observées sur les aubes des roues de la turbine. Les panneaux cellulaires qui stabilisent le premier étage (panneaux qui étaient remplacés après chaque utilisation de celui-ci) sont modifiés de manière que leur remplacement ne soit plus nécessaire (le titane remplace l'aluminium). Certains éléments, tels que les vannes, sont modifiés de manière à permettre leur utilisation dans une plage de conditions élargie. La protection thermique à la base du premier étage est renforcée, la poussée des moteurs du premier étage est augmentée de 8 % et celle du moteur du second étage de 5 %, le train d'atterrissage se replie après la récupération au lieu d'être démonté manuellement. L'armature supportant les moteurs est désormais boulonnée au premier étage et non plus soudée, ceci afin de faciliter la révision et l'entretien des moteurs. L'inter-étages qui relie les deux étages, qui n'est plus peint, est de couleur noire. Le premier lancement de cette version s'est déroulé avec succès le .

Comparaison des versions du lanceur

Davantage d’informations Version ...
Composants du lanceur Falcon 1.1

Version partiellement réutilisable

Thumb
Tentative d'appontage du premier étage lors de la mission CRS-6.
Thumb
Test d'atterrissage du prototype Grasshopper ().

L'abaissement des coûts de lancement des fusées Falcon doit passer en grande partie par la réutilisation après usage des lanceurs. La technique utilisée sur les Falcon 1 et les premières Falcon 9 reposait sur l'utilisation de parachutes et la récupération en mer des étages. Mais toutes les tentatives de récupération effectuées après les lancements sont des échecs car les étages ne survivent pas à la séparation avec le reste du lanceur et aux contraintes thermiques subies à grande vitesse. Fin 2011, SpaceX annonce le choix d'une nouvelle technique de récupération qui doit être appliquée initialement au premier étage. Celui-ci, muni d'un train d'atterrissage déployable, doit revenir sur le site du lancement en effectuant un vol en partie propulsé et en atterrissant verticalement[55]. Ce scénario suppose que l'étage conserve une partie du carburant pour le retour au sol. Un prototype, baptisé Grasshopper est développé et effectue un premier test en à basse altitude et faible vitesse[56].

Principes

Plusieurs techniques sont mises en œuvre pour récupérer le premier étage. Le retour sur Terre du lanceur nécessite l'utilisation de la propulsion à la fois pour annuler la vitesse acquise et ramener l'étage sur la base de lancement. Le premier étage est largué à une altitude et une vitesse plus faible que dans la version consommable du lanceur (2 km/s ou Mach 6 contre 3,4 km/s ou Mach 10) pour conserver les ergols nécessaires. Le système de contrôle d'attitude a été modifié pour permettre une stabilisation de l'étage durant sa descente. Le corps de l'étage est également modifié par l'ajout d'un train d'atterrissage et de panneaux cellulaires orientables utilisés pour stabiliser aérodynamiquement le premier étage durant sa descente. Un système de guidage est utilisé pour le calcul de la trajectoire de retour et l'atterrissage de précision.

Trois des neuf propulseurs sont utilisés pour ramener l'étage sur Terre et disposent à cette fin d'une capacité de ré-allumage (c'est-à-dire qu'ils emportent une quantité de produits hypergoliques (triéthylaluminium et triéthylborane) suffisante pour permettre plusieurs allumages successifs. Sur les 411 tonnes d'ergols emportés, environ 50 tonnes ne sont pas consommés au moment du largage de l'étage, mais sont utilisés pour le retour sur Terre. Quatre panneaux cellulaires situés à la périphérie de la partie supérieure de l'étage sont déployés dans l'espace et contribuent à stabiliser le vol lors de son retour sur Terre (avec l'orientation des moteurs, lorsque ceux-ci fonctionnent). Efficaces à la fois en régime supersonique et subsonique, ces panneaux sont orientés chacun de manière indépendante sur deux axes (rotation et inclinaison) via des commandes définies par le système de guidage de l'étage. La force nécessaire est fournie par un système hydraulique qui utilise un fluide stocké sous pression dans un réservoir et qui actionne les actuateurs puis est largué. L'étage dispose de son propre système de contrôle d'attitude utilisant des propulseurs à gaz froid. Ceux-ci sont utilisés pour le largage des propulseurs et pour orienter l'étage lors de son vol de retour sur Terre en vue de sa récupération. Enfin l'étage dispose d'un train d'atterrissage d'une masse de 2 100 kg comportant 4 pieds fixés à la base et réalisé avec une structure en nid d'abeilles d'aluminium et en fibre de carbone. Les pieds sont repliés le long du corps de l'étage durant le vol et un carénage atténue leur traînée aérodynamique. Ils sont déployés 10 secondes avant l'atterrissage grâce à un système pneumatique utilisant de l'hélium sous pression. Une fois déployé, le train d'atterrissage a une envergure de 18 mètres et permet de supporter la décélération subie par l'étage quasiment vidé de ses ergols lorsqu'il touche le sol[40].

Séquence d'atterrissage

Après la séparation du premier étage, les moteurs de contrôle d'attitude sont utilisés pour modifier l'orientation de l'étage afin que la poussée des moteurs ralentisse celui-ci. Environ deux minutes après la séparation trois des moteurs sont mis à feu durant environ 30 secondes pour ramener l'étage vers son point de départ, et le protéger des chaleurs excessives causées par les frottements de l'air pendant la rentrée atmosphérique. Deux minutes plus tard, après déploiement des panneaux cellulaires de stabilisation, les moteurs sont rallumés de nouveau pour ralentir l'étage. Enfin environ 30 secondes avant l'atterrissage un seul de ses moteurs est mis à feu et sa poussée est fortement modulée de manière à poser verticalement et à vitesse nulle l'étage. Six secondes avant le contact avec le sol, le train d'atterrissage est déployé[57].

Remove ads

Installations de lancement

Résumé
Contexte

SpaceX dispose d'installations de lancement à la base de Cap Canaveral en Floride pour le ravitaillement de la Station spatiale internationale et le lancement de satellites en orbite géostationnaire (télécommunications), depuis d'une installation de tir à la base de lancement de Vandenberg en Californie pour le lancement des satellites en orbite polaire (satellites d'observation de la Terre, satellites militaires) et il utilise depuis 2017 le complexe de lancement LC-39A du centre spatial Kennedy pour à la fois lancer des satellites et les vaisseaux Crew Dragon qui réalisent la relève des équipages de la station spatiale internationale.

Cap Canaveral (Floride)

En Floride, le lanceur Falcon 9 est tiré depuis le pas de tir 40 (SLC-40) de la base de Cap Canaveral utilisé autrefois par les fusées Titan III et IV et reconverti pour le lanceur. Les installations comportent un hangar dans lequel le lanceur est assemblé à l'horizontale avec sa charge utile. Il est ensuite installé sur un véhicule sur rail qui supporte un dispositif d'érection sur lequel s'articule une table de lancement massive composée de longerons massifs en acier : cette dernière comporte quatre pattes auxquelles sont fixées le lanceur. L'ensemble est transporté jusqu'au pas de tir situé à faible distance où il est basculé en position verticale. La table de lancement est fixée au sol. Les conduits d'alimentation et les câbles électriques se connectent au lanceur en passant par le système d'érection qui est légèrement écarté du lanceur. Des réservoirs dispersés à une certaine distance du pas de tir et des tours supportant les paratonnerres complètent ces équipements[20]. L'ancienne base de lancement des missiles Atlas LC-13 a été reconvertie en base d'atterrissage (Landing Zone 1) pour les lanceurs-atterrisseurs Falcon 9.

Vandenberg (Californie)

Thumb
Falcon 9 à Vandenberg, la veille du lancement de Jason (satellite). .

Pour placer les satellites sur des orbites polaires SpaceX utilise le pas de tir 4E de la base de lancement de Vandenberg en Californie. Ce pas de tir a été utilisé à compter de 1962 pour les lancements des fusées Atlas puis jusqu'en 2005 par le lanceur Titan IV. SpaceX loue cette installation depuis et des travaux d'adaptation du pas de tir ont été effectués jusqu'en novembre 2012. Le constructeur de la fusée Falcon 9 a réutilisé certains équipements mais a également réalisé des transformations importantes comme la destruction de la tour de service d'une hauteur de plus de 30 étages et de la tour d'approvisionnement d'une hauteur de 20 étages. Le complexe comprend une zone bétonnée et un large conduit d'évacuation des fumées. Autour du pas de tir, il y a des citernes de LOX, de RP-1 et d'eau, un bâtiment d'assemblage des lanceurs Falcon 9 et une voie bétonnée utilisée pour acheminer les lanceurs entre le bâtiment d'assemblage et le pas de tir. Lors des lancements, le lanceur, qui est stocké dans le bâtiment d'assemblage est disposée sur la tour/grue à l'aide d'une grue. La charge utile, dans sa coiffe est ensuite fixée au sommet du lanceur. La tour/grue est au dernier moment acheminée jusqu'au pas de tir pour éviter l'exposition de la fusée aux éventuelles intempéries.

Le premier tir depuis Vandenberg a eu lieu le pour placer en orbite le satellite canadien CASSIOPE[58]. Le second tir doit avoir lieu le pour le lancement du satellite Jason-3 pour la Nasa et l'ESA[59].

Centre spatial Kennedy (Floride)

Pour lancer sa fusée lourde Falcon Heavy, SpaceX loue, dans le cadre d'un bail qui court jusqu'en 2025, le complexe de lancement LC-39A du centre spatial Kennedy utilisé autrefois par la Navette spatiale américaine. Entre 2015 et 2016 il réaménage le pas de tir et fait construire un bâtiment d'assemblage. La société lance depuis ce site à la fois des Falcon Heavy et des Falcon 9. Le premier lancement d'une Falcon 9 a eu lieu le et le premier lancement d'une Falcon Heavy le . C'est également depuis ce pas de tir que sont lancés les vaisseaux Crew Dragon assurant la relève des équipages de la station spatiale internationale. A cet effet la tour fixe qui jouxte le pas de tir a été modifiée pour y installer une passerelle permettant à l'équipage de s'installer dans le vaisseau.

Boca Chica (Texas)

SpaceX fait construire des installations de lancement à environ 25 km à l'est de Brownsville (État du Texas) en bordure du golfe du Mexique et à quelques kilomètres de la frontière entre les États-Unis et le Mexique. Après avoir envisagé de lancer depuis cette base des Falcon 9 ainsi que des Falcon Heavy, SpaceX a renoncé en 2018 à cet usage : le site ne doit être utilisé que par la fusée Starship. Contrairement aux autres installations de lancement dont il dispose et qui dépendent du gouvernement américain (NASA et l’Armée de l'Air américaine), Boca Chica appartient en propre à la société, ce qui donnera plus de latitude à SpaceX dans l'exploitation du site. SpaceX a investi 100 millions $ (environ 88 millions ) dans ce complexe de lancement. Les travaux ont débuté en 2015 pour un achèvement prévu fin 2018[60],[61],[62]. La campagne d'essais du Starship commence en 2019.

Remove ads

Déroulement d'un lancement

Résumé
Contexte
Thumb
Lancement d'une fusée Falcon 9, emportant depuis la Vandenberg Air Force Base les dix premiers satellites de télécommunications Iridium Next.

Le lanceur et ses moteurs sont fabriqués dans l'usine de la société située à Hawthorne en Californie près de l'aéroport de Los Angeles. SpaceX y dispose d'une surface couverte de 5,1 hectares permettant d'assembler en parallèle trois lanceurs Falcon 9 ainsi que 2 douzaines de moteurs Merlin et trois lanceurs Falcon 1[20]. Le lanceur est transféré par route jusqu'à son site de lancement (Floride ou Californie) où il est assemblé avec sa charge utile puis testé avant son lancement. Au décollage, les moteurs sont allumés et le lanceur est retenu par les quatre pattes de la table de lancement pour vérifier que la poussée est nominale. Si les données fournies sont correctes, les fixations sont libérées et les pattes basculent en arrière pour s'écarter de la trajectoire des moteurs tandis que le lanceur s'élève lentement. Si une extinction des moteurs a été demandée, le système permet de relancer très rapidement le compte à rebours à h-15 minutes comme cela a été démontré au cours du premier lancement. Max Q (pression aérodynamique maximale) est atteint 76 secondes après le décollage et les contraintes aérodynamiques sont levées au bout de 115 secondes. À t+155,5 secondes, deux des neuf moteurs sont éteints pour limiter l'accélération car la poussée des moteurs de cet étage n'est pas modulable.

La séparation entre les deux étages n'est pas assistée par des fusées mais par des poussoirs pneumatiques comme sur le Falcon 1. Elle se déroule en trois temps : extinction des moteurs du premier étage à t+174,2 secondes, séparation à t+176,2 secondes et démarrage du moteur du second étage à t+179,2 secondes. La jupe de liaison entre les deux étages qui est solidaire du premier étage comprend des parachutes qui doivent freiner sa descente et permettre sa récupération et sa réutilisation après son amerrissage. Le moteur du second étage a une poussée modulable (60 à 100 %) et peut être rallumé deux fois pour répondre à des besoins particuliers de trajectoire. Un double système d'allumage accroît la fiabilité de la mise à feu de ce moteur. La coiffe est éjectée à t+199,2 secondes. Pour une injection en orbite de transfert géostationnaire le second étage est éteint une première fois à t+457,9 secondes puis rallumé entre t+1488,6 et t+1544,6 secondes. Avant la séparation de la charge utile l'orientation du lanceur peut être fixe ou celui-ci peut être mis en rotation à la vitesse de 5 tours par seconde[20]. Initialement les deux étages devaient pouvoir être réutilisés après un lancement, la récupération et la réutilisation du second étage restent cependant encore à démontrer bien que le coût du premier étage représente à lui seul environ 75 % de celui du lanceur.

Remove ads

Falcon Heavy

SpaceX a développé une version lourde de son lanceur dénommé Falcon Heavy, celui-ci comporte deux premiers étages latéraux complémentaires, portant le nombre de moteurs à 27. La capacité du lanceur dans sa version non récupérable sera de 63,8 tonnes en orbite basse[63] et de 26,7 tonnes en orbite de transfert géostationnaire. Son coût annoncé est de 90 à 135 millions $ (2017). Après un essai statique le , son premier lancement s'effectue le . Le lanceur lance une Tesla Roadster d'Elon Musk vers une orbite héliocentrique entre les orbites de la Terre et de Mars.

Remove ads

Lancements

Résumé
Contexte

Historique des lancements

Les 5 premiers lancements utilisent le modèle 1.0 du lanceur qui est ensuite remplacé par le modèle 1.1. À partir du 20e lancement le modèle 1.1 est amélioré avec une poussée supérieure de 30 %, il est renommé "Full Thrust" (pleine poussée), abrégé en "FT". Le 54e lancement voit l'introduction de la dernière version de la Falcon 9, le "Bloc 5" abrégé en "B5". Ce modèle est le seul à voler depuis le 58e lancement.
Les tentatives de récupération du premier étage (dernière colonne) se font d'abord via parachutes, ensuite sur l'océan, puis sur des barges océaniques autonomes et enfin au sol. Ces deux dernières méthodes sont toujours pratiquées selon les profils des lancements.
Les numéros de série du premier étage (troisième colonne) sont mentionnés par quatre chiffres lors de leur première utilisation. Lorsque ces quatre chiffres sont suivis d'un tiret et d'un ou de plusieurs autre(s) chiffre(s) placé(s) après ce tiret, ce(s) dernier(s) chiffre(s) correspond(ent) au nombre de réutilisations de cet étage (si par exemple le nombre "1049" est utilisé pour représenter la première utilisation de l'étage, "1049-10" correspondra à la dixième utilisation dudit étage).

Davantage d’informations N°, Type ...

Nombre de vols par version du lanceur


10
20
30
40
50
60
70
80
90
100
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Nombre de vols réussis


10
20
30
40
50
60
70
80
90
100
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
  •   Succès
  •   Echec partiel
  •   Perdu durant le vol
  •   Perdu au sol

Nombre de vols par mode de récupération


10
20
30
40
50
60
70
80
90
100
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
  •   Succès sur terre
  •   Succès sur une barge
  •   Succès amerrissage
  •   Échec de la rentrée atmosphérique
  •   Échec sur terre
  •   Échec sur une barge
  •   Échec amerrissage
  •   Non récupérable

Nombre de vols par base de lancement


10
20
30
40
50
60
70
80
90
100
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Carnet de commandes

Le carnet de commandes de Bloc 5 comporte environ soixante-dix lancements représentant un montant contractuel de plus de 10 milliards $[138] () dont un minimum de 20 missions de ravitaillement de la station spatiale internationale, 7 missions consacrées au lancement de la constellation Iridium, quelques missions militaires et de nombreux satellites de télécommunications[139],[140].


Vidéo

Remove ads

Flotte de premiers étages "Bloc 5"

Résumé
Contexte

Depuis l'introduction de la génération "Bloc 5", SpaceX dispose d'une flotte de premiers étages de Falcon 9 qui atteignent en les 20 vols sans grosse opération de maintenance et qui doivent à l'avenir, pouvoir voler une quarantaine de fois [141].

Flotte active


Davantage d’informations Premier étage, Date de lancement ...


Flotte retirée


Davantage d’informations Premier étage, Date de lancement ...


Remove ads

Notes et références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads