Bacillus thuringiensis

From Wikipedia, the free encyclopedia

Bacillus thuringiensis
Remove ads

Bacillus thuringiensis é unha especie bacteriana grampositiva, que vive no solo, usada comunmente como pesticida biolóxico (como bacteria completa ou só a toxina Cry extraída dela). Ademais de no solo, B. thuringiensis aparece tamén naturalmente no intestino de eirugas de varios tipos de avelaíñas e bolboretas, ou en superficies de follas, ambientes acuáticos, feces animais, ambientes ricos en insectos, muíños de fariña e depósitos de grans de cereais.[1][2]

Máis información Clasificación científica, Nome binomial ...

Durante a súa esporulación, moitas cepas de B. thuringensis producen proteínas cristalinas (inclusións proteináceas), chamadas δ-endotoxinas, que teñen unha acción insecticida. Isto levou ao seu uso como insecticidas, e máis recentemente á obtención de plantas de cultivo modificadas xeneticamente utilizando os xenes Bt (Bt é a abreviatura de B. thuringensis). Porén, moitas cepas Bt produtoras de cristais non teñen propiedades insecticidas.[3]

Remove ads

Descubrimento e mecanismos de acción insecticida

O B. thuringiensis descubriuno en 1901 o biólogo xaponés Ishiwata Shigetane.[3] En 1911, foi redescuberto en Alemaña por Ernst Berliner, que o illou como causante dunha enfermidade nas eirugas das avelaíñas da fariña. En 1976, Robert A. Zakharyan informou da presenza dun plásmido nunha cepa de B. thuringiensis e suxeriu que o plásmido estaba implicado na formación de endósporas e cristais.[4][5] B. thuringiensis está moi relacionado coa bacteria do solo B.cereus e con B.anthracis: os tres organismos difiren principalmente nos plásmidos que posúen.[6] páx. 34-35 Igual que outros membros do xénero Bacillus, estas tres especies son aerobias e poden formar endósporas.[1] Cando esporula, B. thuringiensis forma cristais de δ-endotoxinas proteináceas insecticidas (chamadas proteínas cristalinas ou Cry, do inglés crystal), que están codificadas por xenes cry.[7] Na maioría das cepas de B. thuringiensis, os xenes cry están localizados nun plásmido, polo que non é un xene cromosómico na maioría das cepas.[8][9][10]

As toxinas Cry teñen actividades específicas contra as especies de insectos das ordes Lepidoptera (avelaíñas e bolboretas), Diptera (moscas e mosquitos), Coleoptera (escaravellos), Hymenoptera (avespas, abellas, formigas e sínfitos) e contra vermes nematodos. Deste modo, B. thuringiensis serve como un importante fonte de toxinas Cry e os seus xenes para a produción de insecticidas biolóxicos ou de plantas de cultivo modificadas xeneticamente. Cando os insectos inxiren cristais da toxina, o pH alcalino do seu tracto dixestivo desnaturaliza os cristais insolubles, facéndoos solubles e deste modo máis doados de ser cortados polas proteases que hai no tubo dixestivo do insecto, o cal libera a toxina Cry dos cristais.[8] A toxina Cry insírese despois na membrana plasmática das células do intestino do animal, e como resultado paraliza o tracto dixestivo e forma un poro.[11] O insecto deixa de alimentarse e morre de fame; o B. thuringiensis vivo pode tamén colonizar o insecto, o cal contribúe á súa morte.[8][11][12] Investigacións publicadas en 2006 suxeriron que cómpre a presenza de bacterias no tubo dixestivo medio en larvas susceptibles para que B. thuringiensis exerza as súas actividades insecticidas.[13]

En 1996 descubriuse outra clase de proteínas insecticidas do B. thuringensis, as chamadas proteínas insecticidas vexetativas (Vip).[14][15] As proteínas Vip non teñen homoloxía de secuencia coas proteínas Cry, non compiten en xeral polos mesmos receptores, e algunhas matan tipos de insectos distintos que as proteínas Cry.[14]

En 2000, descubriuse un novo grupo funcional de proteínas Cry, denominadas parasporinas, obtidas de illados non insecticidas de B. thuringiensis.[16] As proteínas do grupo das parasporinas defínense como proteínas paraspóricas bacterianas de B. thuringiensis e bacterias relacionadas que non son hemolíticas pero poden matar preferencialmente células cancerosas.[17] En 2013, o grupo das parasporinas constaba de seis subfamilias (de PS1 a PS6).[18]

Remove ads

Uso de esporas e proteínas no control de pragas

As esporas e proteínas insecticidas cristalinas producidas por B. thuringiensis utilizáronse para controlar pragas de insectos desde a década de 1920s e aplícanse con frecuencia en forma de esprais líquidos.[19] Utilízanse agora como insecticidas específicos con nomes comerciais de marca como DiPel e Thuricide. Debido á súa especificidade, estes pesticidas considéranse respectuosos co medio ambiente, con pouco ou ningún efecto sobre os seres humanos, a vida silvestre, os polinizadores, e a maior parte dos outros insectos beneficiosos e utilízanse na agricultura orgánica,[20] aínda que os manuais destes produtos conteñen diversos avisos sobre a saúde humana e medio ambiente,[21][22] considérase que a toxicidade é baixa, e unha revisión feita por pares regulatoria europea de cinco cepas aprobadas encontrou que, aínda que hai datos para soster algunhas afirmacións sobre unha baixa toxicidade para os humanos e o medio ambiente, os datos son insuficientes para xustificar a maioría das afirmacións sobre unha toxicidade relevante que se teñen feito.[23]

O Bacillus thuringiensis serovar israelensis é unha cepa de B. thuringiensis amplamente usada como larvicida contra as larvas de mosquito, onde se considera que tamén é un método respectuoso co medio ambiente para o control dos mosquitos.[24]

Estanse a introducir cada pouco tempo novas cepas de B. thuringiensis dado que os insectos, por exemplo, desenvolven resistencia a B. thuringiensis,[25] ou se desexa forzar a aparición de mutacións para modificar as características dun organimso[26] ou para usar enxeñaría xenética recombinante homóoga para mellorar o tamaño dos cristais e incrementar a actividade pesticida[27] ou ampliar o espectro de hóspedes do bacilo e obter formulacións máis efectivas,[28] etc.[29] A cada cepa se lle dá un número de identificación e un rexistro[30] e poden darse permisos para a modificación xenética.[31] No caso dos EEUU, as formulacións de Bt que son aprobadas para a agricultura ecolóxica están listadas nun sitio web do Organic Materials Review Institute (OMRI)[32] e varias páxinas web de universidades dan consellos sobre o uso das esporas ou preparacións de proteínas Bt na agricultura ecolóxica.[33][34]

Remove ads

Uso de xenes Bt en enxeñaría xenética de plantas para o control de pragas

A primeira compañía (en 1985) que desenvolveu plantas de tabaco transformadas por enxeñaría xenética para que tivesen tolerancia aos insectos ao expresaren xenes cry procedentes de B. thuringiensis, foi a compañía belga Plant Genetic Systems (que agora é parte de Bayer CropScience).[35][36] O tabaco Bt nunca foi comercializado, pero estas plantas de tabaco utilízanse para probas de modificacións xenéticas, xa que son doadas de manipular xeneticamente.[37][38]

Thumb
Toxinas Bt presentes en follas de cacahuete (abaixo) protexidas dos danos causados pola larva do trade Elasmopalpus lignosellus (arriba).[39]
Thumb
Exame da resistencia a insectos do millo Bt transxénico en Kenya.

Usos

En 1995, aprobáronse como "seguras" unhas plantas de tabaco transformadas para que producisen a toxina Bt CRY 3A pola Axencia de Protección Ambiental dos Estados Unidos, polo que foi esta a primeira planta de cultivo autoprodutora de pesticida aprobada nese país.[40][41] Chamábase patata "New Leaf" e foi retirada do mercado en 2001 debido á falta de interese do mercado.[42]

En 1996, aprobouse o millo modificado xeneticamente que produce a proteína Bt Cry, que mataba as eirugas do trade do millo europeo e outras especies relacionadas; despois fóronlle introducidos outros xenes Bt que mataban larvas do escaravello Diabrotica.[43]

Entre os xenes Bt que foron introducidos (por separado ou xuntos) por enxeñaría xenética en plantas de cultivo e aprobados están os seguintes: Cry1A.105, CryIAb, CryIF, Cry2Ab, Cry3Bb1, Cry34Ab1, Cry35Ab1, mCry3A, e VIP, e as plantas de cultivo modificadas deste modo inclúen o millo e o algodón.[44][45]páx. 285ff O millo modificado xeneticamente para producir a proteína VIP foi aprobado nos Estados Unidos en 2010.[46] A compañía Monsanto desenvolveu unha variedade de soia que expresaba o Cry1Ac e o xene de resistencia ao glifosato para o mercado brasileiro, que completou todo o proceso regulatorio que hai que seguir no Brasil en 2010.[47][48]

Resistencia a insectos

En 2009, os científicos de Monsanto atoparon que a eiruga de Pectinophora gossypiella desenvolvera resistencia ao pesticida de primeira xeración do algodón Bt en zonas de Gujarat, India (os de primeira xeración expresaban un só xene Bt, o xene Cry1Ac). Esta foi a primeira vez que Monsanto confirmou resistencia Bt.[49][50] Monsanto respondeu inmediatamente introducindo unha segunda xeración de algodón Bt con moitas proteínas Bt, que foi rapidamente aceptado polos agricultores.[49] A resistencia da Pectinophora gossypiella ao algodón Bt de primeira xeración tamén se detectou en Australia, China, España e os Estados Unidos de América.[51]

Pragas secundarias

Varios estudos documentaron o xurdimento de "pragas de insectos chuchadores" (ás que non afectan as toxinas Bt) unha vez pasados uns poucos anos da adopción do cultivo do algodón Bt. Na China, o principal problema foron os insectos míridos (uns hemípteros),[52][53] os cales nalgúns casos "erosionaron completamente os beneficios do cultivo do algodón Bt”.[54] Un estudo feito en 2009 na China concluíu que o incremento deste tipo de pragas secundarias depende da temperatura local e as condicións de pluviosidade e que se incrementou na metade das vilas estudadas. O incremento no uso de insecticidas para o control destes insectos secundarios foi moito menor que a redución no uso total de insecticidas obtido coa adopción do cultivo de algodón Bt.[55] Outro estudo publicado en 2011 estaba baseado nun exame de 1.000 granxas seleccionadas aleatoriamente en cinco provincias da China e encontrou que a redución no uso de pesticidas nos cultivares de algodón Bt é significativamente menor do informado en investigacións feitas en calquera outro lugar, o que concorda coa hipótese suxerida por recentes estudos de que se necesita a aplicación de maior cantidade de pesticidas ao longo do tempo para controlar as pragas secundarias emerxentes, como os áfidos, os ácaros Tetranychidae, e os míridos Lygus spp.[56]

Informouse de problemas similares na India, cos hemípteros Pseudococcidae[57][58] e áfidos,[59] aínda que un estudo de pequenas granxas indias feito entre 2002 e 2008 concluíu que a adopción do algodón Bt produciu maiores rendementos e un menor uso de pesticidas, que decreceu co tempo.[60]

Controversias

Existen controversias sobre o uso de organismos modificados xeneticamente a diferentes niveis, en canto a se fabricalos é ético, se os alimentos producidos con eles son inofensivos, se ditos alimentos deberían ser etiquetados especificamente, se a agricultura biotecnolóxica é necesaria para combater a fame no mundo, e sobre a propiedade intelectual e dinámica de mercado dos cultivos de plantas modificadas xeneticamente, dos seus efectos medioambientais, e o papel das colleitas de plantas modificadas xeneticamente na agricultura industrial en xeral.[61]

Hai tamén algúns destes aspectos que son específicos das plantas de cultivo transxénicas Bt.

Toxicidade para os lepidópteros

O problema que máis publicidade tivo asociado cos cultivos Bt foi se o pole do millo Bt pode matar á bolboreta monarca, tal como se publicou nalgúns artigos.[62] Porén, en 2001 varios estudos posteriores coordinados pola USDA probaron que "os tipos máis comúns de pole de millo Bt non son tóxicos para as larvas da monarca nas concentracións que os insectos encontran nos campos".[63][64][65][66]

Mestura xenética co millo salvaxe

Un estudo publicado na revista Nature en 2001 informaba de que se atoparon xenes de millo que contiñan Bt en millo que crecía no centro de orixe da especie, en Oaxaca, México.[67] En 2002 Nature "concluíu que as evidencias dispoñibles non eran dabondo como para xustificar a publicación do artigo orixinal".[68] Tivo lugar unha importante controversia sobre este artigo e o aviso sen precedentes de Nature.[69][70]

Posteriormente, en 2005, fíxose un estudo a grande escala, que non puido atopar evidencias de mestura xenética en Oaxaca.[71] Un estudo de 2007 informou que "se atoparan proteínas transxénicas expresadas no millo en dúas (0,96%) de entre 208 mostras de campos de cultivo de granxas, localizadas en dúas (8%) das 25 comunidades mostreadas. México importa unha cantidade substancial de millo dos EEUU, e debido ás redes de sementes formais e informais entre os agricultores rurais, hai moitas rutas potenciais de entrada de millo transxénico na comida e redes de alimentación".[72] Un estudo publicado en 2008 indicaba que se producira algunha introdución a pequena escala (aproximadamente o 1%) de secuencias xenéticas transxénicas en campos mostreados mexicanos; non se atoparon probas a favor ou en contra de que este material xenético introducido fose herdado pola seguinte xeración de plantas.[73][74] Ese estudo foi inmediatamente criticado, e o seu revisor escribiu o seguinte: "xeneticamente calquera planta debería ser ou ben non transxénica ou ben transxénica; por tanto, no tecido dunha folla dunha soa planta transxénica, agardaríase un nivel próximo ao 100% de organismos modificados xeneticamente. No seu estudo, os autores elixiron clasificar as mostras de follas como transxénicas a pesar de teren niveis de menos do 0,1% de organismo modificado xeneticamente. Sostemos que resultados como estes están interpretados incorrectamente como positivos e son máis probablemente indicativos dunha contaminación no laboratorio".[75]

Efectos sobre as colonias de abellas

En 2007 detectouse un novo fenómeno que afectaba ás abellas do mel norteamericanas chamado trastorno do colapso das colonias. As especulacións iniciais sobre as causas ían desde novos parasitos que as afectasen ata efectos dos pesticidas[76] ou o uso de cultivos transxénicos Bt.[77] O Mid-Atlantic Apiculture Research and Extension Consortium publicou un informe en 2007 no que se dicía que non se atoparan evidencias de que o pole dos cultivos Bt estivese afectando negativamente ás abellas.[78] A causa real da doenza descoñecíase en 2007, e os científicos cren que pode haber múltiples causas que actúan á vez.[79] Unha das principais teorías exposta en 2013 foi que os causantes poderían ser os neonicotinoides, como se indica nun informe da Autoridade de Seguridade Alimentaria Europea.[80][81]

Remove ads

Beta-exotoxinas

Algúns illados de B. thuringiensis producen un tipo de moléculas pequenas insecticidas chamado beta-exotoxina, cuxo nome común é turinxiensina.[82] Un documento de consenso do OECD di así: "A beta-exotoxina e as outras toxinas de Bacillus poden contribuír á toxicidade insecticida da bacteria aos insectos lepidópteros, dípteros, e coleópteros. A beta-exotoxina sábese que é tóxica para os humanos e case todas as outras formas de vida, e a súa presenza está prohibida nos produtos microbianos de B. thuringiensis. As plantas modificadas xeneticamente para que conteñan e expresen só os xenes para as δ-endotoxinas evitan o problema de avaliar os riscos que presentan estas outras toxinas que poden ser producidas nas preparacións microbianas".[83]

Thumb
Un Ovitrap (ovitrampa), que é unha ferramenta para a recollida de ovos de mosquitos tigre. Neste caso estase usando para recoller ovos do mosquito tigre asiático Aedes albopictus en Suíza. Os gránulos negros na auga son unha preparación de Bacillus thuringiensis israelensis que mata as larvas do mosquito que eclosionan na oviitrap. Tamén se usan para monitorizar o mosquito da febre amarela Aedes aegypti.
Remove ads

Notas

Véxase tamén

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads