Лучшие вопросы
Таймлайн
Чат
Перспективы

Двумерное пространство

пространство, параметризуемое двумя переменными Из Википедии, свободной энциклопедии

Remove ads

Двуме́рное простра́нство (иногда говорят двухме́рное пространство) — геометрическая модель плоской проекции физического мира. Двумерным пространством считается -мерное пространство, где .

Примером двумерного пространства является плоскость (двумерное евклидово пространство). Точки данного пространства возможно задать всего двумя числами: , называемыми на евклидовой плоскости абсциссой и ординатой. Плоские объекты характеризуются не только длиной, но и шириной[1], в отличие от одномерных.

Другие поверхности трёхмерного евклидова пространства, кроме плоскости, могут быть рассмотрены как двумерные неевклидовы пространства.

Remove ads

Геометрия двумерного пространства

Суммиров вкратце
Перспектива

Многогранники

В двумерном пространстве существует бесконечно много правильных многогранников: правильные многоугольники. Примеры последних приведены ниже:

Выпуклые

Символ (символ Шлефли) обозначает правильный -угольник.

Подробнее , ...

Гиперсфера

Гиперсферой в двумерном пространстве является окружность, которую иногда называют 1-сфера, потому что её поверхность является одномерной. Площадь части плоскости, заключённой внутри гиперсферы (площадь круга) равна:

,

где  — радиус окружности.

Remove ads

Системы координат в двумерном пространстве

Наиболее распространённые координатные системы в двумерном евклидовом пространстве — прямоугольная (декартова) система координат и полярная система координат. На 2-сфере используется географическая координатная система.

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads