Лучшие вопросы
Таймлайн
Чат
Перспективы
Метод максимального правдоподобия
это метод оценивания неизвестного параметра путём максимизации функции правдоподобия Из Википедии, свободной энциклопедии
Remove ads
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия[1]. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами (хотя ранее он был использован Гауссом, Лапласом и другими).
Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных и обеспечения оценки параметров модели.
Метод максимального правдоподобия соответствует многим известным методам оценки в области статистики. Например, вы интересуетесь таким антропометрическим параметром, как рост жителей России. Предположим, у вас имеются данные о росте некоторого количества людей, а не всего населения. Кроме того, предполагается, что рост является нормально распределённой величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста в выборке являются максимально правдоподобными к среднему значению и дисперсии всего населения.
Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия даёт уникальный и простой способ определить решения в случае нормального распределения.
Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе:
- линейные модели и обобщённые линейные модели;
- факторный анализ;
- моделирование структурных уравнений;
- многие ситуации, в рамках проверки гипотезы и формирования доверительного интервала;
- дискретные модели выбора.
Remove ads
Сущность метода
Суммиров вкратце
Перспектива
Пусть есть выборка из распределения , где — неизвестные параметры. Пусть — функция правдоподобия, где . Точечная оценка
называется оце́нкой максима́льного правдоподо́бия параметра . Таким образом оценка максимального правдоподобия — это такая оценка, которая максимизирует функцию правдоподобия при фиксированной реализации выборки.
Часто вместо функции правдоподобия используют логарифмическую функцию правдоподобия . Так как функция монотонно возрастает на всей области определения, максимум любой функции является максимумом функции и наоборот. Таким образом,
- ,
Если функция правдоподобия дифференцируема, то необходимое условие экстремума — равенство нулю её градиента:
Достаточное условие экстремума может быть сформулировано как отрицательная определённость гессиана — матрицы вторых производных:
Важное значение для оценки свойств оценок метода максимального правдоподобия играет так называемая информационная матрица, равная по определению:
В оптимальной точке информационная матрица совпадает с математическим ожиданием гессиана, взятым со знаком минус:
Remove ads
Свойства
- Оценки максимального правдоподобия, вообще говоря, могут быть смещёнными (см. примеры), но являются состоятельными, асимптотически эффективными и асимптотически нормальными оценками. Асимптотическая нормальность означает, что
где — асимптотическая информационная матрица.
Асимптотическая эффективность означает, что асимптотическая ковариационная матрица является нижней границей для всех состоятельных асимптотически нормальных оценок.
- Если — оценка метода максимального правдоподобия, параметров , то является оценкой максимального правдоподобия для , где g — непрерывная функция (функциональная инвариантность). Таким образом, законы распределения данных можно параметризовать различным образом.
- Также необходимым условием МП-оценок является выполнение системы вида:
- где — функция правдоподобия выборки объёма
Remove ads
Примеры
Суммиров вкратце
Перспектива
- Пусть — независимая выборка из непрерывного равномерного распределения на отрезке , где — неизвестный параметр. Тогда функция правдоподобия имеет вид
Последнее равенство может быть переписано в виде:
где , откуда видно, что своего максимума функция правдоподобия достигает в точке . Таким образом
- .
Такая оценка будет смещенной: , откуда
- Пусть — независимая выборка из нормального распределения с неизвестными средним и дисперсией. Построим оценку максимального правдоподобия для неизвестного вектора параметров . Логарифмическая функция правдоподобия принимает вид
- .
Чтобы найти её максимум, приравняем к нулю частные производные:
откуда
Remove ads
Применение метода[2]
Суммиров вкратце
Перспектива
Обработка эксперимента
Предположим, что мы измеряем некоторую величину . Сделав одно измерение, получили её значение с ошибкой : . Запишем плотность вероятности того, что величина примет значение :
.
Теперь предположим, что мы провели несколько таких измерений и получили . Плотность вероятности того, что величина примет значения , будет:
.
Эта функция называется функцией правдоподобия. Наиболее вероятное значение измеряемой величины определяется по максимуму функции правдоподобия. Более удобной является логарифмическая функция правдоподобия:
.
Продифференцируем логарифмическую функцию правдоподобия по :
.
Приравняем к и получим некоторое значение :
.
Крамер сформулировал следующую теорему:
Теорема: Не существует другого метода обработки результатов эксперимента, который дал бы лучшее приближение к истине, чем метод максимального правдоподобия.
Ошибки измерений
Предположим, что мы провели серию измерений и получили серию значений , естественно записать, что это распределение будет иметь гауссовский вид:
.
Запишем логарифмическую функцию правдоподобия:.
Возьмем первую производную:
.
Если , то . Теперь возьмем вторую производную:
, откуда
.
Это называется первой магической формулой[2].
Remove ads
Условный метод максимального правдоподобия
Условный метод максимального правдоподобия (Conditional ML) используется в регрессионных моделях. Суть метода заключается в том, что используется не полное совместное распределение всех переменных (зависимой и регрессоров), а только условное распределение зависимой переменной по факторам, то есть фактически распределение случайных ошибок регрессионной модели. Полная функция правдоподобия есть произведение «условной функции правдоподобия» и плотности распределения факторов. Условный ММП эквивалентен полному варианту ММП в том случае, когда распределение факторов никак не зависит от оцениваемых параметров. Это условие часто нарушается в моделях временных рядов, например в авторегрессионной модели. В данном случае, регрессорами являются прошлые значения зависимой переменной, а значит их значения также подчиняются той же AR-модели, то есть распределение регрессоров зависит от оцениваемых параметров. В таких случаях результаты применения условного и полного метода максимального правдоподобия будут различаться.
Remove ads
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads