Лучшие вопросы
Таймлайн
Чат
Перспективы

Соя

однолетнее травянистое растение Из Википедии, свободной энциклопедии

Соя
Remove ads

Со́я культу́рная (лат. Glycine max) — однолетнее травянистое растение, вид рода Соя (Glycine) семейства Бобовые.

Краткие факты Соя культурная, Научная классификация ...

Культурная соя широко возделывается в более чем 60 странах на всех континентах, кроме Антарктиды. Семена сои, не совсем точно называемые «соевыми бобами» (от англ. soya bean, soybean), — широко распространённый продукт, известный ещё в третьем тысячелетии до нашей эры.

Соя — самая распространённая среди зернобобовых и масличных культур. Она служит сырьем для широкого спектра пищевых продуктов, а высокое содержание белка и ценных пищевых компонентов позволяет использовать её в качестве недорогого заменителя мяса и молочных продуктов.

Thumb
Соевые бобы
Remove ads

Морфология сои

Суммиров вкратце
Перспектива
Thumb
Цветки сои
Thumb
Спелые бобы с семенами сои

Стебли культурной сои от тонких до толстых, опушённые или голые. Высота стеблей от очень низких (от 15 см) до очень высоких — до 2 и более метров.

У всех видов рода Соя, включая вид культурной сои, листья тройчатосложные, изредка встречаются 5-, 7- и 9-листочковые, с опушёнными листочками и перистым жилкованием. Первый надсемядольный узел стебля имеет два простых листа (примордиальные листья). Эти первичные листья в соответствии с биогенетическим законом Мюллера-Геккеля рассматриваются как филогенетически более древние формы листьев. Общим признаком для всех видов сои является наличие слаборазвитых шиловидных прилистников в основании рахиса и прилистничков в основании отдельного листочка.

Венчик цветка фиолетовый различных оттенков и белый.

Плоды сои представляют собой Бобы, вскрывающиеся двумя створками по брюшному и спинному швам и обычно содержащий 2—3 семени. Бобы преимущественно крупные — 4—6 см длиной, как правило, устойчивые к растрескиванию. Перикарпий (створки боба) сои состоит из 3 слоёв — экзокарпа, мезокарпа и эндокарпа. Главная часть эндокарпа — склеренхима, образующая так называемый пергаментный слой. Считается, что именно склеренхима, подсыхая и сжимаясь, способствует растрескиванию бобов.

Основная форма семян сои овальная, различной выпуклости. Размеры семян варьируют от очень мелких — масса 1000 семян — 60—100 г, до очень крупных (более 310 г) с преобладанием семян среднего размера — 150—199 г. Семенная оболочка плотная, нередко блестящая, которая часто оказывается практически непроницаемой для воды, образуя т. н. «твёрдые» или «твёрдокаменные» семена. Под семенной оболочкой располагаются занимающие центральную и наибольшую часть семени крупные осевые органы зародыша — корешок и почечка, нередко в просторечии именуемые зародышем. Окраска семян преимущественно жёлтая, изредка встречаются формы с чёрными, зелёными и коричневыми семенами.

Remove ads

История сои

Суммиров вкратце
Перспектива

Соя является одним из самых древних культурных растений. История возделывания этой культуры исчисляется, по меньшей мере, пятью тысячами лет. Рисунки сои в Китае были обнаружены на камнях, костях и черепашьих панцирях. О возделывании сои упоминается в самой ранней китайской литературе, относящейся к периоду 3—4 тысячи лет до нашей эры. По мнению одного из крупнейших специалистов по сое в СССР В. Б. Енкена соя как культурное растение сформировалась в глубокой древности, не менее 6—7 тысяч лет тому назад.

В то же время отсутствие остатков этого растения среди неолитических находок других культур (риса, чумизы) на территории Китая, а также полулегендарная личность императора Шэньнуна вызвали сомнение у других учёных в точности датировки возраста культурной сои. Так, Хаймовиц (Hymowitz, 1970), ссылаясь на работы китайских исследователей, сделал вывод, что существующие документированные сведения о доместикации сои в Китае относятся к периоду не ранее XI века до нашей эры.

Следующей страной, где соя была введена в культуру и получила статус важного пищевого растения, стала Корея. На Японские острова первые образцы сои попали позже, в период 500 г. до н. э. — 400 г. н. э. С того времени в Японии стали формироваться местные ландрасы. Считается, что соя в Японию попала из Кореи, поскольку древние корейские государства длительное время колонизировали Японские острова. Этот тезис подтверждает идентичность форм сои Кореи и Японии.

Thumb
Американская реклама продуктов из сои времён Второй мировой войны

Европейским учёным соя известна после того, как германский натуралист Энгельберт Кемпфер посетил в 1691 году Восток и описал сою в своей книге «Amoentitatum Exoticarum Politico-Physico-Medicarum», изданной в 1712 г. В знаменитой книге Карла Линнея «Species Plantarum», изданной первым изданием в 1753 г., соя упоминается под двумя названиями — Phaseolus max Lin. и Dolychos soja Lin.[источник не указан 2757 дней] Затем в 1794 году немецкий ботаник Конрад Мёнх повторно открыл сою и описал её под названием Soja hispida Moench[источник не указан 2757 дней]. В Европу соя проникла через Францию в 1740 году, однако возделываться там стала лишь с 1885 года. В 1790 году соя впервые была ввезена в Англию.

Первые исследования сои в США были проведены в 1804 году в штате Пенсильвания и в 1829 году в штате Массачусетс. К 1890 году большинство опытных учреждений этой страны уже ставило опыты с соей. В 1898 году в США было завезено большое количество сортообразцов сои из Азии и Европы, после чего началась целенаправленная селекция и промышленное выращивание этой культуры. В 1907 году площади под соей в США уже составляли около 20 тыс. га. В начале 1930-х годов площади под соей в этой стране превысили 1 млн га.

По мнению дальневосточного учёного-селекционера В. А. Золотницкого (1962), первым в СССР начавшего научную селекцию сои, приоритет в исследованиях дикой и культурной сои принадлежит русским учёным и путешественникам. Первые упоминания о сое в России относятся к экспедиции В. Пояркова в Охотское море в 1643—1646 годах, который встретил посевы сои по среднему течению Амура у местного маньчжуро-тунгусского населения. Записки Пояркова вскоре были изданы в Голландии и стали известны в Европе почти на столетие раньше Кемпфера. Следующее российское архивное упоминание об этой культуре датируется уже 1741 годом. Однако практический интерес к этой культуре в России появился только после Всемирной выставки в Вене в 1873 году, где экспонировались более 20 сортов сои из Азии и Африки.

В 1873 году русский ботаник Карл Максимович почти в тех же местах встретил и описал сою под названием Glycine hispida Maxim., которое прочно укоренилось на целое столетие как в России, (затем и в СССР), так и в мире.

Первые опытные посевы в России были произведены в 1877 году на землях Таврической и Херсонской губерний. Первые селекционные работы в России были начаты в период 1912—1918 годах на Амурском опытном поле. Однако Гражданская война в России привела к потере опытной популяции. Начало восстановления амурской жёлтой популяции сои, но уже несколько иного фенотипа относится к 1923—1924 годам. В результате непрерывного отбора на выравненность был создан первый отечественный сорт сои под названием Амурская жёлтая популяция, который возделывался в производстве до 1934 года.

По мнению селекционеров той эпохи, началом массового внедрения и распространения сои в России следует считать 1924—1927 годы[1]. Тогда же соя стала возделываться в Краснодарском и Ставропольском краях, а также в Ростовской области.

Русское слово «соя» было заимствовано из романских или германских языков (soy/soya/soja). Все европейские формы восходят к японскому слову «соевый соус» (яп. 醤油 сё:ю).

Remove ads

Производство

Суммиров вкратце
Перспектива

Сою выращивают в более чем в 60 странах, в Азии, Южной Европе, Северной и Южной Америке, Центральной и Южной Африке, Австралии, на островах Тихого и Индийского океанов. Её возделывают в умеренном, субтропическом и тропическом поясах, на широтах от экватора до 56—60°. В 2014 году посевные площади сои в мире составляли более 117 млн га[2][3]. Среднемировая урожайность сои составляла на 2020 год 27,9 центнера с гектара[4].

Бразилия обеспечивает 60% мирового экспорта сои. В сезоне 2024/25 она увеличивает посевную площадь под сою до 47 млн гектаров и готовится к рекордному урожаю в 169 млн. тонн, что обвалит и без того низкие цены на сою на мировом рынке[5]. Аргентинские фермеры в 2024/25 МГ переориентируются с выращивания кукурузы на сою. Ожидается, что посевная площадь под сою увеличится на 2 млн га с 16,8 млн га в 2023/24 МГ[6]. В 2024 году в США ожидается рекордный урожай сои 124,9 млн тонн[7].

Подробнее Крупнейшие производители сои (тысяч тонн), Страна ...
Подробнее Крупнейшие экспортеры соевых бобов (тыс. тонн), Страна ...
Подробнее Крупнейшие импортеры соевых бобов (тыс. тонн), Страна ...

Производство в России

В 2024 рекордный урожай сои 7040 тыс. тонн за счет за счет расширения площадей (на 18,0% до 4 327,0 тыс. га), урожайность снизилась до 16,7 ц/га (с 19,2 ц/га в 2023). ТОП регионов по валовому сбору: Амурская область, Курская область, Белгородская область, Тамбовская область, Воронежская область, Алтайский край, Орловская область, Липецкая область, Рязанская область, Краснодарский край[9].

В 2021 году посевную площадь сои увеличили на 7,3 % до 3071,1 тыс. га, валовый сбор составил 4758,9 тыс. тонн при урожайности 15,9 ц/га. ТОП регионов по валовому сбору: Амурская область, Белгородская область, Курская область, Приморский край, Тамбовская область. По урожайности лидирует Астраханская область — 28,3 ц/га, Чеченская Республика — 25,8 ц/га, Брянская область — 24,4 ц/га, Кабардино-Балкарская республика — 22,4 ц/га, Краснодарский край — 19,9 ц/га[10].

По плану 2019 года, Министерство сельского хозяйства РФ предполагало увеличить производство сои до 7,2 млн тонн к 2024 году. В 2020 году 39 субъектов РФ получили господдержку для стимулирования производства сои и рапса в рамках федерального проекта «Экспорт продукции АПК».

В 2023 году сбор сои увеличился до 6742 тысяч тонн (+12,3 %) при росте посевной площади до 3,662 млн га (+4,4%). Сбор сои в ближайшие годы планируется увеличить до 7-8 млн тонн[11].

Remove ads

Генетика сои

Суммиров вкратце
Перспектива
Thumb
Разнообразие окраски семян сои

Геном сои состоит из 20 хромосом (2n = 40), митохондриальной ДНК и ДНК хлоропластов, размер генома составляет 1115 Мб[12]. Геном сои (сорт Williams 82) был отсеквенирован в 2010 году. Секвенирование выявило, что соя является палеополиплоидом. В своей отдалённой эволюции геном сои дважды прошёл через полное удвоение (59 и 13 млн лет назад), после чего хромосомы претерпели множество перестроек, поэтому в настоящее время кариотип сои выглядит как диплоидный. В просеквенированном геноме было выявлено более 46 тысяч генов, кодирующих белки. Это на 70 % больше, чем у растительного модельного объекта — резуховидки Таля (Arabidopsis thaliana). Многие гены существуют в нескольких копиях из-за того, что в эволюции сои было две полногеномных дупликации[13].

Генетические модификации

Соя является одной из сельскохозяйственных культур, которые в настоящее время подвергаются генетическим изменениям. ГМ-соя входит в состав всё большего числа продуктов.

Американская компания «Монсанто» — мировой лидер поставок ГМ-сои. В 1995 году Монсанто выпустила на рынок генетически изменённую сою с новым признаком «Раундап Рэди» (англ. Roundup Ready, или сокращённо RR). «Раундап» — это торговая марка гербицида под названием глифосат, который был изобретён и выпущен на рынок Монсанто в 1970-х годах. RR-растения содержат полную копию гена енолпирувилшикиматфосфат синтетазы (EPSP synthase) из почвенной бактерии Agrobacterium sp. strain CP4, перенесённую в геном сои при помощи генной пушки, что делает их устойчивыми к гербициду глифосату, применяемому на плантациях для борьбы с сорными растениями. В 2006 году RR-соя выращивалась на 92 % всех посевных площадей США, засеянных этой культурой. ГМ-соя разрешена к импорту и употреблению в пищу в большинстве стран мира, в то время как посев и выращивание ГМ-сои разрешены далеко не везде. В России решение о разрешении возделывания ГМ-сои, как и других ГМ-растений, отложено до 2017 года[14].

Thumb
Американские учёные, которые занимаются селекцией сои

Однако широкое внедрение трансгенных сортов сои в США не оказало существенного влияния на среднюю продуктивность этой культуры. Урожайность сои в США, несмотря на неуклонное, начиная с 1996 года, возрастание доли генетически модифицированных сортов, растёт примерно с той же скоростью, что и до внедрения RR-сои. Более того, урожайность сои в европейских странах, использующих только сорта, созданные классической селекцией, практически не отличается от продуктивности сои в США. В ряде случаев отмечалось даже снижение продуктивности генетически модифицированных сортов сои по сравнению с обычными. Привлекательность RR-сои для фермеров состоит в первую очередь в том, что её легче и дешевле выращивать, так как можно намного эффективнее бороться с сорняками.

В XXI веке стали появляться исследования[15], свидетельствующие о возможности создания генотипов сои, аналогичных некоторым трансгенным сортам, но выведенных классическими методами. Примером таких технологий является соя Vistive с пониженным содержанием линоленовой кислоты (С18:3), выведенная Монсанто методами классической генетики для того, чтобы помочь пищевой индустрии в удалении из пищи вредных трансжиров. Трансжиры представляют собой побочный продукт, образующийся в процессе гидрогенизации растительных масел, проводимой для повышения его стабильности и изменения пластических свойств. В 1990-х годах появились указания на то, что употребление в пищу продуктов, содержащих трансжиры (таких как маргарин), увеличивает риск сердечно-сосудистых заболеваний. Соевое масло, получаемое из таких сортов, как Vistive, не нуждается в дополнительной обработке и во многих случаях способно заменить гидрогенизированные масла с высоким содержанием трансжиров.

Для того, чтобы отличить товарные партии сои, не подвергнутые генетической модификации, в мировой торговле может применяться IP-сертификация.

На территории некоторых стран, в том числе в Евросоюзе и России, информация об использовании ГМ-сои в составе продуктов обязательно должна присутствовать на этикетке товара (только при содержании компонентов ГМО в размере более 0,9 %)[16].

Remove ads

Биохимический состав семян сои

Суммиров вкратце
Перспектива
Краткие факты Свежие зелёные бобы сои, Состав на 100 г продукта ...
Краткие факты Зрелые семена сои, Состав на 100 г продукта ...

Белки

Основным биохимическим компонентом семян сои является белок. Среди всех возделываемых в мире сельскохозяйственных культур соя является одной из самых высокобелковых. По данным разных источников, содержание белка в семенах этой культуры составляет в среднем 38—42 %, и может доходить до 50 %[2].

Белки сои неоднородны по структуре и функциям. Соя богата незаменимыми аминокислотами, особенно лизином (2-2,7 %), которым бедны белки зерновых культур[17]. Большую часть соевого белка (около 70 %) составляют запасные белки 7S-глобулины (β-конглицинины) и 11S-глобулины (глицинины)[18], которые вполне нормально усваиваются млекопитающими. Благодаря тому, что значительную часть белков сои составляют водорастворимые белки, получение растительного белка из сои наиболее эффективно[19]. Соевая мука является самым широко используемым источником белка при создании сбалансированных кормов, однако, в процессе получения нуждается в термической обработке для инактивации антипитательных компонентов. Среди остатка есть вещества, которые принято считать антипитательными компонентами пищи, такие как ингибиторы протеолитических ферментов, лектины, уреаза, липоксигеназа и другие.

Антипитательные компоненты

Ингибиторы протеаз составляют 5—10 % от общего количества белка в семенах сои. Их активность колеблется от 7 до 38 мг/г. Отличительной особенностью этих веществ является то, что, взаимодействуя с ферментами, предназначенными для расщепления белков, они образуют устойчивые комплексы, лишённые как ингибиторной, так и ферментативной активности. Результатом такой блокады является снижение усвоения белковых веществ рациона. Попадая в желудок, часть ингибиторов (30—40 %) теряет свою активность, а наиболее устойчивые достигают двенадцатиперстной кишки в активной форме и ингибируют ферменты, вырабатываемые поджелудочной железой. В результате этого поджелудочная железа вынуждена продуцировать их более интенсивно, что в конечном итоге может вызвать её гипертрофию.

По химическому строению, свойствам и субстратной специфичности ингибиторы протеаз сои, в основном, относятся к двум семействам:

  • Ингибиторы Кунитца[англ.] — водорастворимые белки с молекулярной массой 20 000—25 000 Да, связывающие одну молекулу трипсина, со сравнительно небольшим числом дисульфидных мостиков, с изоэлектрической точкой 4,5;
  • ингибиторы Баумана — Бирк — спирторастворимые белки с молекулярной массой 6000—10 000 Да и небольшим числом дисульфидных мостиков, способных ингибировать как трипсин, так и химотрипсин, с изоэлектрической точкой 4,0—4,2.

Лектины (фитогемагглютенины) представляют собой гликопротеины. Они нарушают функцию всасывания слизистой кишечника, повышают её проницаемость для бактериальных токсинов и продуктов гниения, агглютинируют эритроциты всех групп крови, вызывают задержку роста. В составе белка их от 2 до 10 %, а активность колеблется от 18 до 74 ГАЕ/мг муки. Лектины хорошо извлекаются водой и спиртом. Некоторые исследователи отмечают, что для инактивации лектинов достаточны более мягкие условия, чем для ингибиторов трипсина, а именно — обработка пропионовой кислотой или же термическое воздействие при 80—100 °C в течение 15—25 минут.

Уреаза — фермент, который осуществляет гидролитическое расщепление мочевины с образованием аммиака и углекислого газа. Уровень её активности важен только для молочного животноводства при использовании сои в кормах, содержащих мочевину, так как при взаимодействии уреазы с мочевиной кормов образуется аммиак, отравляющий организм животного. В исходных семенах сои доля уреазы может достигать 6 % от количества всех белков.

Липоксигеназа — фермент, окисляющий липиды, содержащие цис-цис-диеновые единицы. Образующиеся при этом гидроперекисные радикалы окисляют каротиноиды и другие кислородмобильные компоненты, снижая тем самым пищевые достоинства сои. Кроме того, под действием липоксигеназы при длительном хранении семян в них образуются альдегиды и кетоны (гексаналь, этилвинилкетон), которые придают сое специфический неприятный запах и вкус.

Жиры

Соя является не только источником белка, но и масла, содержание которого в семенах колеблется от 16 до 27 %. В состав сырого масла входят триглицериды и липоидные вещества[20].

Отличительной особенностью сои является самое высокое содержание фосфолипидов по сравнению с другими культурами. В соевом масле их содержание колеблется в пределах 1,5—2,5 %[21]. Фосфолипиды способствуют регенерации мембран, увеличивают детоксикационную способность печени, обладают антиоксидантной активностью, снижают у диабетиков потребность в инсулине, предотвращают дегенеративные изменения в нервных клетках, мышцах, укрепляют капилляры.

Триглицериды, состоящие из глицерина и жирных кислот, составляют основную часть соевого масла (95-97 % от общего количества)[21]. В триглицеридах соевого масла содержание насыщенных жиров составляет 13—14 %, что значительно ниже, чем в животных жирах (41—66 %). В нём преобладают ненасыщенные жирные кислоты (86-87 % от общего количества).

Полиненасыщенные жирные кислоты (ПНЖК) характеризуются наибольшей биологической активностью. Незаменимой является линолевая кислота (С18:2), которая не синтезируется организмом человека и должна поступать только с пищей. Биологическая роль ПНЖК велика. Они являются предшественниками в биосинтезе гормоноподобных веществ — простагландинов, одной из многочисленных функций которых является препятствование отложению холестерина в стенках кровеносных сосудов, приводящего к образованию атеросклеротических бляшек.

Токоферолы — биологически активные вещества соевого масла. Содержание и функции отдельных фракций различны. α-токоферолы характеризуются наибольшей Е-витаминной активностью. Их содержание в масле составляет 100 мг/кг. β-, γ- и δ-токоферолы обладают антиокислительными свойствами, которые особенно сильно выражены во фракциях γ- и δ-токоферолов. Наличие самого большого количества токоферолов в соевом масле (830—1200 мг/кг) по сравнению с другими маслами (кукурузным — 910 мг/кг; подсолнечным — 490—680 мг/кг; оливковым — 172 мг/кг) обусловливает его способность в наибольшей степени повышать защитные свойства организма, замедлять старение, повышать потенцию.

Характерной особенностью сои является невысокое содержание углеводов. Углеводы в сое представлены растворимыми сахарами — глюкозой, фруктозой (моно-), сахарозой (ди-), рафинозой (три-), стахиозой (тетра-) сахарами, а также гидролизуемыми полисахаридами (крахмалом и др.) и нерастворимыми структурными полисахаридами (гемицеллюлозой, пектиновыми веществами, слизями и другими соединениями, образующими клеточные стенки). Во фракции растворимых углеводов моносахариды составляют лишь 1 %, а 99 % представлены сахарозой, рафинозой, стахиозой. В расчете на сухое вещество семени в сое содержится 1-1,6 % трисахарида рафинозы, которая состоит из молекул глюкозы, фруктозы и галактозы, а также 3-6 % тетрасахарида стахиозы, образованной молекулами глюкозы, фруктозы и двумя молекулами галактозы.

Семена сои — один из редких продуктов, содержащих изофлавоны. Они сконцентрированы в гипокотиле сои и отсутствуют в масле. К соевым изофлавонам относятся генистин (1664 мг/кг) генистеин, даидзин (581 мг/кг), даидзеин, глицитеин (338 мг/кг), куместрол (0,4 мг/кг), являющиеся термостабильными гликозидами, и которые не разрушаются при кулинарной обработке. Это биологически активные компоненты сои, которые обладают различной эстрогенной активностью. Сапонины также являются гликозидами. В соевой муке они составляют от 0,5 до 2,2 %. Сапонины придают сое горьковатый вкус и оказывают гемолитическое воздействие на красные кровяные тельца.

Углеводы

Углеводы в сое составляют 22-35 %, в их состав входят сахароза, декстрины, гемицеллюлозы, небольшое количество моносахаридов и клетчатка. Соя содержит мало крахмала (1-1.5 %)[3].

Микро- и макроэлементы

Минеральные вещества составляют 4-6 %[3]. В состав зольных элементов семян сои входят следующие макроэлементы (в мг на 100 г семян): калий — 1607, фосфор — 603, кальций — 348, магний — 226, сера — 214, кремний — 177, хлор — 64, натрий — 44, а также микроэлементы (в мкг на 100 г): железо — 9670, марганец — 2800, бор — 750, алюминий — 700, медь — 500, никель — 304, молибден — 99, кобальт — 31,2, йод — 8,2.

Витамины

В соевом зерне содержится целый ряд витаминов (в мг на 100 г): β-каротина — 0,15-0,20, витамина Е — 17,3, пиридоксина (В6) — 0,7-1,3, ниацина (РР) — 2,1-3,5, пантотеновой кислоты (В3) — 1,3-2,23, рибофлавина (В2) — 0,22-0,38, тиамина (В1) — 0,94-1,8, холина — 270, а также (в мкг на 100 г зерна): биотина — 6,0-9,0, фолиевой кислоты — 180—200.11

Remove ads

Влияние сои на мужское здоровье

Суммиров вкратце
Перспектива

Существовали некоторые опасения, что соя может иметь «феминизирующий» эффект или снижать уровень тестостерона у мужчин, влияя на эрекцию и качество спермы. Сою называют[кто?] главным продуктом, снижающим тестостерон у мужчин[22][неавторитетный источник]. Это связано с тем, что активные ингредиенты сои — изофлавоны — являются производными от фитоэстрогенов — соединениями растительного происхождения, которые, возможно, ведут себя так же, как эстрогены. Эстрогены — это гормоны, которые активно участвуют в репродуктивной системе женщины. Мужские тела тоже производят эстрогены, но в гораздо меньших количествах.

Ученые много лет изучали влияние сои на уровень тестостерона. В 2010 году журнал Fertility and Sterility на сайте Национальной медицинской библиотеки США опубликовал анализ более 30 связанных исследований с участием более 900 мужчин. Исследователи пришли к выводу, что «ни соевые продукты, ни добавки изофлавонов не изменяют показателей биодоступной концентрации тестостерона у мужчин»[23][24].

Основываясь на результатах этого исследования, в 2021 году журнал Reproductive Toxicology опубликовал ещё один анализ. Для этого исследования исследователи изучили 41 исследование, опубликованное с 2010 по апрель 2020 года. В этих исследованиях приняли участие более 1700 мужчин. Авторы не обнаружили никакой связи между потреблением сои и уровнем тестостерона[25].

Remove ads

Использование

Суммиров вкратце
Перспектива

Соя — самая распространенная среди зернобобовых и масличных культур[2]. Она широко используется как пищевая, кормовая и техническая культура. Из неё изготовляют масло, заменители молока и молочнокислых продуктов, муку. Соевое масло составляет около 30 % от производимых в мире растительных масел[26]. Соевая мука используется как белковая добавка.

Популярность пищевой сои обусловлена следующими характеристиками:

  • высокая урожайность;
  • очень высокое (30-52 %) содержание белка (уступает только люпину);
  • наличие в составе витаминов группы В, железа, кальция, калия, незаменимых аминокислот и незаменимых полиненасыщенных жирных кислот (линолевая и линоленовая);
  • возможность профилактики остеопороза и сердечно-сосудистых заболеваний;

В связи с этим соя часто используется как недорогой и полезный заменитель мяса и молочных продуктов, причём не только людьми с небольшим достатком, но и людьми, по различным причинам отказавшимися от мяса, например, вегетарианцами. Также соя входит в состав кормов молодняка сельскохозяйственных животных. Соевый шрот широко задействован в мясо-молочной промышленности и входит в состав многих изделий из мяса[27][28]

Соя — безотходная культура, все части растения перерабатываются в более чем четыреста видов различной продукции[29].

Соевые продукты

Соя — один из богатейших белком растительных продуктов. Это свойство позволяет использовать сою для приготовления и обогащения разных блюд, а также в качестве основы растительных заменителей продуктов животного происхождения. Из неё производятся многочисленные т. н. соевые продукты. Соя и соевые продукты широко используются в восточноазиатских (особенно в японской и китайской), и вегетарианской кухне:

  • натто — продукт из ферментированных, предварительно отваренных целых семян сои;
  • соевая мука — мука из семян сои;
  • соевое масло — растительное масло из семян сои;
  • соевое молоко — напиток на основе семян сои, белого цвета;
  • соевое мясо — текстурированный продукт из обезжиренной соевой муки, напоминающий по виду и структуре мясо;
  • соевая паста:
    • кочхуджан — корейская соевая паста, заправленная большим количеством перца;
    • мисо — ферментированная паста на основе семян сои. Используется, в частности, для приготовления супа мисосиру;
    • твенджан — корейская соевая паста с резким запахом. Используется при приготовлении блюд;
  • соевый соус — жидкий соус на основе ферментированной сои;
  • темпе — ферментированный продукт из семян сои с добавлением грибковой культуры. Имеет лёгкий аммиачный запах, обычно прессуется в брикеты;
  • тофу — продукт из соевого молока, производство которого схоже с производством сыра из коровьего молока. В зависимости от разновидности может иметь различную консистенцию, от мягкой и сравнимой с желе до консистенции твёрдого сыра. Прессуется в блоки. При замораживании приобретает жёлтоватый цвет, после размораживания становится белым и имеет очень пористую структуру;
  • эдамамэ — варёные зелёными бобы с семенами, закуска;
  • юба — подсушенная пенка с поверхности соевого молока. Используется как в сыром виде (иногда замороженная), так и в сухом.

Соя используется также для производства растительных или вегетарианских аналогов продуктов животного происхождения. На основе соевых продуктов готовятся вегетарианские сосиски, бургеры, котлеты, сыры, и т. п.

Соевый жмых — продукт, полученный в результате прессования соевых бобов — используется в кормлении сельскохозяйственных животных. Жмых входит в состав почти всех комбикормов и частично используется как самостоятельный корм.

В России нередко под названием «соевые проростки» продаются проростки бобов мунг (маш, фасоль золотистая — Vigna radiata, Phaseolus aureus), а не сои. Отличить настоящий продукт можно по наличию на оригинальной упаковке с проростками китайских иероглифов, означающих натуральную сою — 大豆 (Да доу — большой боб) или 黃豆 (Хуан доу — жёлтый боб).

Корм для животных

Для кормовых целей соя применяется в виде жмыха, шрота и соевой муки.

Шрот содержит 40 % белка, 1,4 % жира, примерно 30 % безазотистых экстрактивных веществ.

100 кг сена из сои включают 51 кормовую единицу, 15,4 % белка, 5,2 % жира, 38,6 % углеводов, 7,2 % минеральных веществ, 22,3 % клетчатки[30].

Биодизель

В связи с наличием большого количества жиров в сое данное растение также применяется как один из источников жидкого топлива — биодизеля.

Remove ads

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads