Лучшие вопросы
Таймлайн
Чат
Перспективы
Тета-функция
Из Википедии, свободной энциклопедии
Remove ads
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля[1].

Наиболее распространённый вид тета-функций — это функции, встречающиеся в теории эллиптических функций. По отношению к одной из комплексных переменных (обычно обозначаемой z) тета-функция имеет свойство, выражающееся в сложении периодов ассоциированных эллиптических функций, что делает их квазипериодическими[англ.]. В абстрактной теории это получается из условия линейного расслоения[англ.] понижения[англ.].
Remove ads
Тета-функция Якоби
Суммиров вкратце
Перспектива




Имеется несколько связанных функций, которые называются тета-функциями Якоби, и много различных и несовместимых систем их обозначения. Одна тета-функция Якоби (названа именем Карла Густава Якоби), это функция, определённая от 2 комплексных переменных z и , где z может быть любым комплексным числом, а ограничена верхней половиной плоскости, что означает, что число имеет положительную мнимую часть. Функция задаётся формулой
где и . Функция является формой Якоби[англ.]. Если фиксировать , функция становится рядом Фурье для периодической целой функции от z с периодом 1. В этом случае тета-функция удовлетворяет тождеству
Функция ведёт себя очень регулярно с учётом квазипериода и удовлетворяет функциональному уравнению
где a и b — целые числа.


Remove ads
Вспомогательные функции
Суммиров вкратце
Перспектива
Тета-функция Якоби, определённая выше, иногда рассматривается вместе с тремя дополнительными тета-функциями и в этом случае записывается с дополнительным индексом 0:
Дополнительные (полупериодичные) функции определяются формулами
Этим обозначениям следовали Риман и Мамфорд. Первоначальная формулировка Якоби была в терминах нома[англ.] , а не . В обозначениях Якоби θ-функции записываются в виде:
Приведённые выше определения тета-функции Якоби далеко не единственные. См. статью Тета-функции Якоби (вариации обозначений)[англ.] с дальнейшим обсуждением.
Если мы положим в тета-функциях выше, мы получим четыре функции, зависящие только от и определённые на верхней полуплоскости (которые иногда называются тета-константами.) Они могут быть использованы для определения различных модулярных форм и для параметризации некоторых кривых.
Remove ads
Тождества основная
Суммиров вкратце
Перспектива
Так называемые функции «тета-нульверт» (Theta-Nullwert) имеют следующее представление суммы и следующее представление произведения:
Тета-функция удовлетворяет следующему основному соотношению с «номеном q»:
Следующие 2 формулы определяют полный эллиптический интеграл 1-го типа и согласуются друг с другом:
Remove ads
Тождества Якоби
Суммиров вкратце
Перспектива
В частности Тождества Якоби определяется следующей формулой:
Эта формула представляет собой кривой Ферма 4 степени.
Тождества Якоби также возникает как комбинация 3 квадратичных соотношений:
Объединение этих 3 формул даёт следующую формулу:
Тождества Якоби описывают, как тета-функции преобразуются модулярной группой, которая порождается отображениями и . Тождества для первого преобразования найти легко, поскольку добавление единицы в показателе к имеет тот же эффект, что и добавление к z ( mod 2). Во 2 случае положим
Тогда
Remove ads
Тета-функции в терминах нома
Суммиров вкратце
Перспектива
Вместо выражения тета-функций в терминах z и мы можем выразить их в терминах аргумента w и нома[англ.] q, где , а . В этом случае функции превращаются в
Мы видим, что тета-функции можно определить в терминах w и q без прямой ссылки на экспоненциальную функцию. Формулы могут быть использованы, поэтому, для определения тета-функций над другими полями, где экспоненциальная функция может быть не везде определена, такими как поле p-адических чисел.
Remove ads
Представления произведений
Суммиров вкратце
Перспектива
Тройное произведение Якоби (специальный случай тождеств Макдональда[англ.]) говорит нам, что для комплексных чисел w и q с и мы имеем
Это можно доказать элементарными средствами, как, например, в книге Харди и Райта An Introduction to the Theory of Numbers[англ.].
Если мы выразим тета-функцию в терминах томов и , то
Мы поэтому получаем формулу произведения для тета-функции вида
В терминах w и q:
где является q-символом Похгаммера, а является q-тета-функцией[англ.]. Если раскрыть скобки, тройное произведение Якоби получит вид
что можно также переписать в виде
Эта формула верна для общего случая, но представляет особый интерес при вещественных z. Аналогичные формулы произведений для дополнительных тета-функций
Remove ads
Интегральные представления
Суммиров вкратце
Перспектива
Тета-функции Якоби имеют следующие интегральные представления:
Remove ads
Явные значения
Суммиров вкратце
Перспектива
Лемнискатические значения
См. статью Джинхи Йи (2004)[2].
В следующей таблице приведены лемнискатические значения функций ϑ₁₀(x) и ϑ₀₀(x):
Дополнительные значения для ϑ₀₀(x):
И с греческой буквой показано Золотое сечение. Символом обозначена постоянная Гаусса, которая представляет собой отношение лемнискатической константы к числу π. Только что показанные значения были исследованы южнокорейским математиком Джинхи Йи из Пусанского национального университета (부산 대학교). Их результаты впоследствии были опубликованы в Журнале математического анализа и приложений. Кроме того, применяются следующие значения:
Эти 2 значения можно определить непосредственно с помощью формулы суммы Пуассона:
Эквиангармонические значения
Функция ϑ₀₀ имеет следующие эквиангармонические значения функции:
Некоторые эквиангармонические значения тета-функции были исследованы, в частности, математиками Брюсом Карлом Берндтом и Орсом Ребаком.
Значения тета над факториалами восьмых
Значения функции вида ϑ₀₁:
Remove ads
Некоторые тождества с рядами
Суммиров вкратце
Перспектива
Следующие 2 тождества для рядов были доказаны Иштваном Мезо[3]:
Эти отношения выполняются для всех 0 < q < 1. Фиксируя значения q, мы получим следующие свободные от параметров суммы
Remove ads
Нули тета-функций Якоби
Суммиров вкратце
Перспектива
Все нули тета-функций Якоби являются простыми нулями и задаются следующим образом:
- ,
где m, n являются произвольными целыми.
Remove ads
Связь с дзета-функцией Римана
Суммиров вкратце
Перспектива
Соотношение
использовал Риман для доказательства функционального уравнения для дзета-функции Римана посредством преобразования Меллина
и можно показать, что преобразование инвариантно относительно замены s на 1 − s. Соответствующий интеграл для z ≠ 0 дан в статье о дзета-функции Гурвица.
Remove ads
Связь с эллиптической функцией Вейерштрасса
Тета-функции использовал Якоби для построения (в виде, приспособленном для упрощения вычислений) его эллиптических функций как частные вышеприведённых 4 тета-функций, и он мог их использовать также для построения эллиптических функций Вейерштрасса, поскольку
- ,
где вторая производная берётся по z, а константа c определена так, что ряд Лорана функции ℘(z) в точке z = 0 имеет нулевой постоянный член.
Связь с q-гамма функцией
Суммиров вкратце
Перспектива
Четвёртая тета-функция – а тогда и остальные – неразрывно связана с q-гамма-функцией Джексона[англ.] соотношением[4].
Связь с эта-функцией Дедекинда
Суммиров вкратце
Перспектива
Пусть — эта-функция Дедекинда, а аргумент тета-функции представлен как ном[англ.] . Тогда
и
См. также статью о модулярных функциях Вебера.
Эллиптический модуль
Суммиров вкратце
Перспектива
J-инвариант равен
- ,
дополнительный эллиптический модуль равен
Решение теплового уравнения
Суммиров вкратце
Перспектива
Тета-функция Якоби является фундаментальным решением одномерного уравнения теплопроводности с пространственными периодическими граничными условиями[5]. Принимая вещественным, а с вещественным и положительным t, мы можем записать
- ,
что решает уравнение теплопроводности
Это решение в виде тета-функции является 1-периодическим по x, и при оно стремится к периодической дельта-функции или гребню Дирака в смысле распределений
- .
Общие решения для задачи с пространственными периодическими начальными значениями для уравнения теплопроводности могут быть получены путём свёртки начальных данных в с тета-функцией.
Связь с группой Гейзенберга
Тета-функция Якоби является инвариантом при действии дискретной подгруппы группы Гейзенберга. Эта инвариантность представлена в статье о тета-представлении[англ.] группы Гейзенберга.
Обобщения
Суммиров вкратце
Перспектива
Если F является квадратичной формой от n переменных, то тета-функция, связанная с F, равна
с суммой по решётке целых чисел ℤn. Эта тета-функция является модулярной формой с весом (на надлежащим образом определённой подгруппе) модулярной группы. В разложении в ряд Фурье
числа называются числами представления формы.
Тета-функция Рамануджана
Риманова тета-функция
Пусть
является множеством симметричных квадратных матриц, мнимая часть которых положительно определена. ℍn называется верхним полупространством Зигеля[англ.] и является многомерным аналогом верхней полуплоскости. n-Мерным аналогом модулярной группы является симплектическая группа Sp(2n,ℤ). Для . Роль n-мерного аналога конгруэнтных подгрупп играет
Тогда, если дано , тета-функция Римана определяется как
Здесь является n-мерным комплексным вектором, а верхний индекс T означает транспонирование. Тета-функция Якоби является тогда частным случаем с и , где является верхней полуплоскостью.
Тета-функция Римана сходится абсолютно и равномерно на компактных подмножествах .
Функциональное уравнение функции
которое выполняется для всех векторов и для всех }} и .
Ряд Пуанкаре
Ряд Пуанкаре[англ.] обобщает тета-ряд на автоморфные формы применительно к произвольным фуксовым группам.
Уравнения пятой степени
Суммиров вкратце
Перспектива
Решение формы Бринга-Джеррарда
Согласно Теореме Абеля-Руффини общее уравнение 5 степени не может быть решено в элементарной радикальной форме. Но общее решение вполне возможно с помощью эллиптических функций. С тета-функцией общий случай Уравнения 5 степени также может быть решен как функция эллиптического «номена q» из эллиптического модуля, который всегда «элементарен» в зависимости от коэффициентов. Для следующего уравнения пятой степени в форме Бринга-Джеррарда общее решение может быть представлено в упрощенной форме тета-функцией ϑ₀₀:
Для всех реальных значений имеет показанную сумму функции пятой степени и идентичную функцию отображения для в зависимости от точно реальное решение. И это фактическое решение может для всех действительных значений может быть вызвано точно по следующему алгоритму:
Уравнение Бринга – Джеррарда:
|
Значение эллиптической функции «Номен q»:
|
Актуальное решение для :
|
3 примера расчёта
Ниже в качестве примеров рассматриваются 3 уравнения, которые можно решить с помощью тета-функции Якоби, но вообще нельзя решить с помощью элементарных корневых выражений:
Тот же образец процедуры применяется в следующем уравнении:
Это 3 пример:
Примечания
Литература
Литература для дальнейшего чтения
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads