热门问题
时间线
聊天
视角
生命史
生命演化的歷史 来自维基百科,自由的百科全书
Remove ads
地球生命史追溯從生命初出現至今,由現存生物和化石所呈現的生命進化過程。地球大約形成於45億年前。有證據表明,生命誕生於約37億年前。[1][2][3]雖然也有一些化石表明早在41至42.8億年前就有生命存在,但這些所謂的化石可能形成於非生物原因,因此仍有爭議。[1][4][5][6]
現今所有已知物種間的相似性表明,它們是從某個共同起源演化而來的。[7]目前地球上約有1萬億個物種[8],其中已命名的只有約175-180萬個[9][10],資料庫中得到記錄的約有180萬種。[11]目前尚存的物種數目占地球上曾存在過所有物種的不到1%。[12][13]
-4500 —
–
-4250 —
–
-4000 —
–
-3750 —
–
-3500 —
–
-3250 —
–
-3000 —
–
-2750 —
–
-2500 —
–
-2250 —
–
-2000 —
–
-1750 —
–
-1500 —
–
-1250 —
–
-1000 —
–
-750 —
–
-500 —
–
-250 —
–
0 —
(百萬年)
*冰河時期
生命最早的證據來自格陵蘭西部37億年前的變質沉積岩中的生物碳特徵[2][3]及疊層岩化石[14]。2015年,西澳大利亞州又在41億年前的岩層中發現了可能的「生物質遺蹟」。[15][5]2017年3月,加拿大魁北克努夫亞吉圖克綠岩帶的海底熱泉沉澱物中發現了微生物化石,這可能是地球上最古老的生命形式的推定證據,最早可能生活在42.8億年前,說明在44億年前海洋形成、45.4億年前地球形成後很短時間就出現了生命。[16][17]
由共存的細菌和古菌組成的菌毯是始太古代的主要生命形式,早期進化的重要步驟大都發生於此。[18]光合作用大約在35億年前演化出來,其廢棄物——氧——在大氣層中逐漸聚集,於24億年前引發了大氧化事件。[19]真核生物(攜帶細胞器的複雜細胞)大約誕生於18.5億年前或更早,[20][21][21]它們開始利用氧氣進行代謝後,多樣化的進程便逐漸加速。約17億年前,多細胞生物開始出現,細胞分化創造出有著專門功能的不同細胞。[22]有性生殖與無性生殖相對,是雌雄生殖細胞(配子)在受精中結合為受精卵來實現繁殖的過程,它也是絕大多數宏觀(肉眼可見)生物、幾乎所有真核生物(含動物、植物)的主要繁殖方式。[23]有性生殖的演化對生物學家來說則仍是一個謎,儘管它確實是從單細胞真核生物的共同祖先那裡演化來的。[24]兩側對稱動物大約出現於5.55億年前。[25]
類似藻類的多細胞陸生植物的年代甚至能追溯到10億年前,[26]儘管有證據表明至少27億年前微生物就組成了最早的陸地生態系。[27]據信微生物為奧陶紀植物的登陸鋪平了道路。陸生植物是如此成功,甚至可能引發了泥盆紀後期滅絕事件[28](涉及早期古蕨屬樹木的大量繁殖:(1) 拉低了CO2含量,導致全球寒化與海平面降低;(2) 古蕨的根系促進土壤的發育,加劇了岩石的風化,營養物質、礦物質淋失入海,可能引發了全球規模水華,進一步導致缺氧事件,引起海洋生物死亡。海洋物種是泥盆紀後期滅絕事件的主要受害者)。
埃迪卡拉紀出現了埃迪卡拉生物群[29],而脊椎動物、其他大多數現代門都源自5.25億年前的寒武紀大爆發。[30]二疊紀時,包括哺乳動物祖先在內的合弓綱在陸地上占據了主導地位,[31]但大多都在2.52億年前的二疊紀-三疊紀滅絕事件中滅絕了。[32]在這場災難的恢復過程中,主龍類成為了占主導地位的陸地脊椎動物;[33]主龍類中的恐龍主宰了侏羅紀和白堊紀。[34]6600萬年前的白堊紀﹣古近紀滅絕事件殺死了非鳥恐龍後,[35]哺乳動物在體形和多樣性上都迅速增長。[36]這種生物集群滅絕可能為新生物群的多樣化提供了機會,進而加速了進化。[37]
Remove ads
地球最早歷史
地球及生命史
-4500 —
–
-4250 —
–
-4000 —
–
-3750 —
–
-3500 —
–
-3250 —
–
-3000 —
–
-2750 —
–
-2500 —
–
-2250 —
–
-2000 —
–
-1750 —
–
-1500 —
–
-1250 —
–
-1000 —
–
-750 —
–
-500 —
–
-250 —
–
0 —
單位:百萬年
在地球上發現的最古老的隕石碎片約有45.4億年的歷史。再加上對古鉛礦為主的定年,估計地球大約形成於那個時候。[40]月球的成分基本與地球地殼相同,但沒有像地球那樣富鐵的核心。許多學者認為,地球在形成後約4000萬年,與一個火星大小的星體相撞,將形成月球的地殼物質拋進軌道。另一個假設是,地球和月球同時形成,但地球的引力比月球強得多,幾乎吸引到了所有的鐵微粒。[41]
直到2001年在地球上發現的最古老的岩石約有38億年歷史,[42][40]這誤導科學家估計那之前地表一直是熔融的。他們據此將這段地球史稱作冥古宙。[43]然而,對44億年前形成的鋯石的分析顯示,地球地殼在地球形成後約1億年就已經凝固了,而且地球很快就獲得了海洋和大氣,可能已經能夠支持生命。[44][45][46]
來自月球的證據表明,40到38億年前它遭受了太陽系形成時留下的碎片的後期重轟炸期,地球的引力更強,應當遭受了更強烈的撞擊。[43][47]雖然沒有直接證據能表明這時地球的地表狀況,但也沒有理由認為地球沒有受到影響。[48]來自彗星撞擊的氣體和水可能徹底取代了之前的任何大氣或海洋,地球上火山釋氣也至少提供了一半的貢獻。[49]如果此時地下已經出現了生命,它應在轟炸期倖存了下來。[50]
Remove ads
地球上生命的最早證據
得到確認的最早生命體十分微小,也沒什麼特徵,化石看起來像小棒子,很難與非生物過程產生的結構區分開來。無可爭議的最古老的生命證據是細菌化石,定年為30億年前。[51]35億年前的岩層中的發現被解釋為細菌[52],地球化學證據似乎也顯示38億年前存在生命。[53]然而,對這些分析進行的嚴格審查表明,非生物過程也可以產生所有見諸報告的「生命證據」。[54][55]雖然這證明不了所有「生命證據」都來自非生物過程,但也證明不了所有「生命證據」都來自生命過程。34億年前的沉積岩中的地球化學特徵被解釋為生命的證據,[51][56]但這些說法尚未得到批評者的充分研究。
地球上生命的起源
生物學家推測,地球上所有生物都必然有一個單一的最後共同祖先,因為多個起源幾乎不可能獨立演變出所有生物共有的許多複雜生化機制。[58][59]
地球生命以碳與水為基礎。碳為複雜化學物質提供了穩定的框架,且從環境中的二氧化碳中可以很容易地提取出來。[46]碳的化學特性鶴立雞群,沒有另一種能與它比擬:元素周期表上碳緊下方的矽不能形成像碳那麼多的複雜穩定大分子,且其化合物大都不溶於水;且與二氧化碳相比,二氧化矽在能支持生物的溫度下是一種堅硬耐磨的固體,對生物來說更難利用。硼和磷擁有更複雜的化學性質,但相比於碳還是受到不少限制。水是一種出色的溶劑,還有另外兩個特性:冰能漂在水上,這使得水生生物能在冬天水體部分結冰的環境下也能生存;其分子存在極性,能溶解的物質比其他溶劑更多。氨等溶劑只有在低溫下才是液態的,化學反應可能過於緩慢,無法維持生命,也沒有水的其他優勢。[60]不過,基於假定型生物化學的生命體在其他星球上可能也存在。[61]
關於生命如何從化學物質中產生的研究集中在三個可能的出發點上:自我複製,即生命體產生與自己非常相似後代的能力;新陳代謝,即養活並修復自己的能力;細胞膜,即允許食物進入、廢物離開,並與不需要的環境相分割的能力。[62]關於生命起源的研究還有很長的路要走,因為這方面的理論和經驗證據才剛開始接觸。[63][64]
Remove ads
現代三域系統中最簡單的生命也使用DNA記錄遺傳信息,一系列RNA和蛋白質分子則負責「閱讀」這些指令,並將其用於生長、維護與繁殖。一些RNA分子可以催化自身複製和蛋白質構建,這一發現說明早期生命形式可以完全基於RNA。[65]這些核酶可能形成了一個RNA世界,其中有個體但尚無物種,因為突變和基因水平轉移意味著每個後代都可能具有和父母本不同的基因組。[66]RNA後來被DNA取代,後者更穩定,能構建更大的基因組,進而延拓了單個生命體的能力範圍。[66][67][68]核糖酶仍是核糖體的主要組成部分,後者是現代細胞的「蛋白質工廠」。[69]證據表明,地球上最早的RNA分子誕生於41.7億年之前或更早。[70]
雖然實驗室里已經人工生產出了能自我複製的短RNA分子,[71]RNA能否經由自然過程自動合成仍無人知悉。[72]最早的「核酶」可能是由較簡單的核酸,如PNA、TNA、GNA等形成的,後來被RNA取代。[73][74]
2003年有人提出,多孔金屬硫化物沉澱可在海底熱泉約100°C的環境和洋底壓力下催化RNA合成。根據這一假設,脂類膜會是最後出現的主要細胞成分,在此之前原初生命體會被限制在孔隙中。[75]
Remove ads
1997年開始的一系列實驗表明,硫化亞鐵和硫化鎳作催化劑,可以實現從一氧化碳和硫化氫等無機材料到蛋白質前體的轉化。大多數步驟需要大約100°C的溫度和適度的壓強,其中有一步需要250°C的溫度和7km岩石下的壓力。因此,有人認為蛋白質的自我維持合成可能發生在海底熱泉附近。[76]
有人認為細胞外膜雙重氣泡樣的脂質可能是必不可少的第一步。[77]模擬早期地球條件的實驗報告了脂質的形成,它們可以自發地形成脂質體、雙層「氣泡」,並進行自我繁殖。[46]雖然它們不像核酸那樣是內在的信息載體,但也會受到壽命與繁殖的自然選擇。RNA等核酸可能在脂質體內部更容易合成。[78]
RNA很複雜,人們懷疑它能否在野外以非生物方式產生。[72]蒙脫石為代表的黏土具有加速RNA世界形成的特性:它們通過結晶模式自我複製;受類似於自然選擇的機制影響,特定環境中生長最快的黏土「物種」會迅速成為主導;可以催化RNA分子的形成。[79]:57–66雖然這一觀點沒有成為科學界的共識,但仍有積極的支持者。[80]
2003年的研究稱,蒙脫石還可以加速脂肪酸轉化為「氣泡」的過程,它可以包裹附著在黏土上的RNA,還可以通過吸收額外的脂質而「成長」與分裂。最早的細胞的形成可能有著類似過程的幫助。[81]
胚種論沒有解釋生命最初是如何產生的,只是提到了生命源自地外的可能性。地球生命源自宇宙其他地方的「播種」的想法至少可以追溯到公元前6世紀的古希臘哲學家阿那克西曼德。[83]20世紀又由物理化學家斯萬特·阿倫尼烏斯、[84]:32天文學家弗雷德·霍伊爾、錢德拉·維克拉瑪辛赫(Chandra Wickramasinghe)、[85]分子生物學家弗朗西斯·克里克、化學家萊斯利·奧格爾(Leslie Orgel)重新提出。[86]
這種假說有三個主要版本:
- 從太陽系其他地方通過小行星撞擊產生的碎片進入太空、到達地球,此說最可能的生命來源是火星[87]或金星[88];
- 外星人帶來,可能是他們帶來的微生物意外發生星際污染的結果;[86]
- 來自太陽系外,經自然手段帶來。[84][87]
EXOSTACK等低地球軌道上進行的試驗已經證明,一些微生物孢子可在被彈射到太空中的衝擊中存活下來,有些可以在外太空輻射下存活至少5.7年。[89][90]科學家們對火星[91]或銀河系其他行星上獨立產生生命的可能性存在分歧。[87]
菌毯對環境與演化的影響

菌毯是多層、多種細菌及其他物種共生組成的生物群落,一般只有幾毫米厚,但仍蘊含豐富的化學環境,每種環境都利於不同的微生物生存。[92]每個墊層都在某種程度上形成了自己的食物鏈,因為每組微生物的廢棄物通常都是相鄰組的「食物」。[93]
墊層中的微生物為避免水帶來的沉積物活埋它們,慢慢向上遷移,形成的粗壯的柱子便是疊層石。[92]對於30億年前再往前的所謂化石的可信度一直有激烈的爭議,[94]批評者指出地層中類似於疊層石化石的結構也可能由非生物過程形成。[54]2006年,在澳大利亞同一地區,又發現了35億年前之前的岩石中存在疊層石。[95]
現代菌毯中,頂層常常由可以光合作用的藍菌組成,它們創造了菌毯上部的富氧環境。菌毯底部無氧,氣體以厭氧菌排放的硫化氫等為主。[93]據估計,菌毯中細菌含氧光合作用的出現使得生物生產力提高了100至1000倍。含氧光合作用所用的氫原子來自水,它比早期非含氧光合作用所需要的地質運動產生的還原劑豐富得多。[96]從這時開始,生命生產的資源就明顯躲過了地球化學過程所產生的。[97]氧氣對不適應它的生命來說是劇毒的,但由於其極高的化學能[98],又大大提高了適應了氧氣的生物的代謝效率。[99][100]大約24億年前開始,氧氣逐漸變為地球大氣層的主要組分之一。[101]雖然真核生物可能出現得比這早,[102][103]但大氣層含氧量是複雜真核細胞進化的先決條件,而所有多細胞生物都是由真核細胞構成的。[104]夜間光合作用停止後,菌毯中富氧-無氧界會上移,第二天天亮後會下移。這會對中間區域的生物施加演化壓力,使它們通過內共生之類手段耐受並學會利用氧氣。「內共生」指一種生物活在另一種生物體內,且兩者都從這種共生中受益。[18]
在菌毯中,藍菌擁有最齊全的「工具包」,是最能自給自足的菌毯生物,既能供養菌毯,也能為浮游植物奠基,支撐海洋食物網的大部分。[18]
Remove ads
真核生物的多樣化
真核生物可能在大氣含氧量劇增之前就存在了,[102]但現代絕大多數真核生物都需要氧氣,其化學能[98]被粒線體用於生產三磷酸腺苷,後者是所有已知細胞的內部能量來源。[104]1970年代有人率先提出,真核生物是原核生物間系列內共生的結果,經過廣泛的討論,目前人們已經接受了此觀點:例如,捕食性微生物入侵了一個大型原核生物,如古菌,但攻擊被化解。於是入侵者住了下來,演化為粒線體;這些嵌合體的其中一個後來試圖吞下可光合作用的藍藻,但藍藻沒能被消化,倖存者演化為葉綠體,成為植物的祖先;諸如此類。每次內共生開始後,兩方都會重排自己的基因組,以消除無益的重複性狀,這有時涉及基因在兩者間的轉移。[107][108][109]另一種假說認為,粒線體最初是代謝硫或氫的內共生生物,後來轉為耗氧。[110]另一方面,粒線體也可能是真核生物的原始細胞器之一。[111]
真核生物首次出現的時間存在爭議:澳洲頁岩中的甾烷可能說明27億年前就已經存在;[103]然而2008年一項分析認為,這些化學物質滲入岩石的時間不到22億年,不能證明真核生物的起源。[112]18.5億年前的岩石中發現的捲曲藻屬化石(最初定年為21億年前,後來修正[21])表明,帶有細胞器的真核生物在那時就已經演化出來。[113]15-14億年前的岩石中發現了多種藻類化石。[114]真菌最早的化石來自14.3億年前。[115]
色素體是一大類細胞器,最知名的是葉綠體,可能起源於內共生的藍細菌。這種共生關係源於約15億年前,使真核生物能進行含氧光合作用。[104]此後出現了三種不同光合作用質體的演化支:綠藻與植物的葉綠體、紅藻的藻紅體、灰藻的灰質體。[116]在色素體這種初級內共生出現後不久,藻紅體和葉綠體被傳遞給其他雙鞭毛生物,到新元古代末成功誕生了真核浮游植物。
有性生殖與多細胞生物
真核生物有性生殖的決定性特徵是減數分裂與受精,這種繁殖中有很多基因重組,後代從父母雙方各獲得50%的基因,[117]而無性生殖沒有基因重組的過程。細菌也會通過接合交換DNA,它們可以以此傳播抗生素抗藥性以及利用其它代謝產物的能力。[118]然而接合不是繁殖方式,也不限於同一物種——甚至有細菌將DNA轉移到動植物身上的例子。[119]
另一方面,細菌轉化顯然是在同一種細菌間轉移DNA的一種適應。細菌轉化涉及眾多細菌基因的產物,可視作一種細菌形式的有性生殖。[120][121]這一過程至少在67個原核生物物種(分屬7個門)中自然產生。[122]真核生物的有性生殖可能就來自細菌的轉化。[123]:1–50
有性繁殖的缺點眾所周知:基因重組可能破壞有利的基因組合;由於雄性不能直接增加下一代的數量,無性繁殖種群可以在短短50代以內取代其他方面都相等的有性繁殖種群。[117]但絕大多數動物、植物、真菌、原核生物都採用了有性生殖。有強有力的證據表明,有性繁殖幾乎是伴隨著真核生物一同出現的,控制它的基因從那時起就變化不大。[124]時至今日,有性生殖的起源與存續仍是個開放問題。[125]

紅皇后假說認為,有性繁殖為寄生蟲提供保護,因為寄生蟲更容易演化出克服基因相同的克隆體的防禦手段,而不是因繁殖時基因重組導致兩代間有基因差別的有性物種的防禦手段,且有實驗證據支持。但有性繁殖能否在存在多個相似無性物種的環境下獲得競爭優勢仍然存疑:其中一個無性物種可能偶然可以耐住寄生蟲並存活足夠長的時間,從而在繁殖上超過有性物種。[117]另外,凱薩琳·漢利(Kathryn A. Hanley)等人發現,與紅皇后假說的預測相反,有性壁虎的蟎蟲流行率、豐度和平均強度明顯高於同一棲息地的無性壁虎。[127]而且,生物學家馬修·帕克(Matthew Parker)在查閱大量關於植物抗病性的研究有,未能發現一種以宿主有無性別為易感條件的病原體。[128]
阿萊克謝·孔德拉紹夫(Alexey Kondrashov)的確定性突變假說(Deterministic Mutation Hypothesis,DMH)假設每個生物都有多個有害突變,這些突變的綜合影響比每個單獨突變的危害之和更有害。這樣,基因重組將減少不良突變對後代的傷害,同時將不良突變隔離在因不良突變數量高於平均水平而迅速死亡的個體中,從而將不良突變從基因庫中消除。然而證據表明DMH假說不可靠,許多物種每個個體的有害突變平均不到一個,而且沒有一種被調查的物種顯示有害突變存在任何協同效應。[117]
有性生殖基因重組的隨機性導致性狀的相對豐度存在代際變化。這種遺傳漂變本身並不足以使有性繁殖變得有利,但和自然選擇結合起來時就足以產生足夠的選擇壓了。突變產生良好性狀組合時,自然選擇會給在遺傳上與這些性狀有關的品系以相當的優勢。另一方面,良好性狀會被有害性狀中和,而有性生殖的基因重組能使良好性狀與其他良好性狀相聯繫,數學模型表明這可能足以抵消有性繁殖的缺點。[125]其他本身不甚充分的假說組合也在研究之中。[117]
下列假說試圖解釋性別何以演化出來:
- 可能使生物體得以修復基因損傷。[129]最原始的有性生殖形式可能是一個生物體複製一個類似生物體的未受損傷的鏈,以此修復受損的DNA。[130]
- 可能源於自私的寄生遺傳元素,通過轉移到新的宿主身上實現自我繁殖。[131]
- 可能從同類相食行為發展而來,受害者的DNA被納入捕食者體內。[130]
- 可能源自鹽桿菌綱轉座子與質粒的交流。[132]
- 可能來自類似於疫苗接種的過程,受感染的宿主提供寄生蟲DNA的共生副本,以便對抗寄生蟲。有性繁殖減數分裂階段可能來自去除共生體的一種方式。[133]
性的適應功能在近日仍是個亟待解決的重要問題。約翰·伯德塞爾(John A. Birdsell)和克里斯多福·威爾斯(Christopher Wills)回顧了解釋性的適應功能的各種模型。[134]:27–137
最簡單的「多細胞」生物就是「有多個細胞」,可以包括像念珠藻屬這樣的藍細菌菌落。「具有相同基因組但表現性狀不同」這樣的定義,也可以包括團藻的部分屬,它們有一部分細胞專門用於繁殖。[135]海綿、其他動物、真菌、植物、褐藻、藍藻粘菌及粘球菌目的多細胞性均是獨立演化出來的。[136]為簡潔起見,本文重點介紹細胞分化程度最高、細胞類型最豐富的生物,儘管這種處理生物複雜性的演變的方法可能被視作「人類中心主義」。[22]

多細胞最初的優勢可能包括:更有效地分享在細胞外消化的營養物質;[138]捕食者多數採用吞噬來攻擊,多細胞化可以增加對抗捕食者的能力;通過附著在堅硬表面抵抗水流;向上延伸以過濾食物或獲得陽光進行光合作用;[139]創造隔絕於外部環境的內部環境;[22]使一群細胞分享信息從而表現得很「聰明」。[137]這些特徵也會為其他生物提供機會,通過創造比扁平的菌毯更多樣的環境促進多樣化。[139]
具備細胞分化的多細胞生物對生物體整體來說是有利的,但從單個細胞的角度來看是不理的,因為大多數細胞失去了自我繁殖的機會。無性多細胞生物中,保留繁殖能力的細胞可能會使整個生物體重回一團未分化的細胞並死亡或散開,而有性繁殖能消除這種「流氓細胞」,因而有性繁殖似乎是複雜多細胞物種誕生的必要條件。[139]
現有證據表明,真核生物演化出來要早得多,但在10億年前左右的快速多樣化之前一直不甚起眼。真核生物唯一明顯優於細菌和古菌之處在於其形態上的多樣化能力,有性繁殖使真核生物能利用這一優勢,產生形態功能不同的多細胞生物體。[139]
科學家通過比較單、多細胞生物的轉錄因子和調控網絡結構的組成,發現多細胞生物中有許多新的轉錄因子和三種新的調控網絡結構,而且新的轉錄因子優先與這些新的結構相關聯,這對多細胞的發育至關重要。這些結果為新型轉錄因子和新型網絡結構在轉錄調控水平上對多細胞生物的起源的貢獻提出了一個合理的機制。[140]
定年結果顯示為21億年前的弗朗西維利安生物群化石是已知最早的多細胞生物化石群,[39]它們可能已經具備了分化的細胞。[141]17億年前的青山蟲(Qingshania)似乎由幾乎相同的細胞組成。12億年前的紅毛菜綱多細胞紅藻(Bangiomorpha)是已知最早的有專門分化細胞的生命體,也是最早的有性繁殖生命體。[139]14.3億年前被解釋為真菌的化石似乎也是具有分化細胞的多細胞生物。[115]15-9億年前的岩石中發現的「珠串」生物Horodyskia可能是早期的後生動物,[21]也可能是有孔蟲菌落。[126]
動物的湧現
動物是多細胞真核生物,[note 1]與植物、藻類、真菌的區別是沒有細胞壁。[143]所有動物都是可移動的[144]。海綿以外的所有動物身體都分化為不同組織,如骨骼肌、神經系統,前者通過收縮使動物得以運動,後者負責信號的傳遞與處理。[145]:28–572019年11月,研究人員報告稱,在6.09億年前的岩石中發現了介於動物和非動物之間的多細胞生物籠脊球屬的化石,可能與動物最初的演化有關。[146][147]對籠脊球屬的化石研究表明,類動物胚胎發育要比明確的最古老動物化石早得多,[146]可能與研究表明的動物進化始自約7.5億年前相一致。[147][148]
被廣泛接受的最早的動物化石看起來很像今日的刺胞動物門(含水母、海葵、水螅),可能形成於5.8億年前。陡山沱組化石的定年並不精確。它們的出現意味著刺胞動物已經和兩側對稱動物發生了分化。[149]
埃迪卡拉生物群在寒武紀之前的4000萬年裡非常繁盛,[150]是第一批超過幾厘米長的動物。許多動物都是扁平的,具有被子狀外觀,以至於有人提議將它們歸入一個單獨的界——凡德生物界。[151]還有一些被歸入軟體動物(金伯拉蟲[152][153])、棘皮動物(海座星[154])與節肢動物(斯普里格蠕蟲[155]、Parvancorina[156])。對於這些化石的具體分類仍有爭議,主要是現在供分類用的特徵在那時大都還沒演化出來。無疑的是,金伯拉蟲是至少有三個胚層的兩側對稱動物,明顯比刺胞動物更複雜。[157]
小殼動物群是晚埃迪卡拉世至苗嶺世發現的非常混合的化石集合。最早的克勞德管科顯示出成功抵禦捕食的跡象,可能表明進化軍備競賽的開端。寒武紀初一些微型貝殼幾乎可以肯定屬於軟體動物,而「盔甲板」的主人——哈氏蟲與微網蟲——則在保存了軟體動物的寒武紀地層中發現了更完整的遺蹟,最終被確定下來。[158]:67–78

1970年代,因為前寒武紀動物化石奇缺,人們開始討論現代生物各門的出現是「爆炸性」的還是漸進的。[158]對伯吉斯頁岩化石的重分析發現了歐巴賓海蠍等不屬於任何已知門類的動物,使人們對這個問題更加感興趣。當時這些化石被解釋為現代門類在寒武紀大爆發中進化得非常迅速的證據,而伯吉斯頁岩的「怪異表現」說明,寒武紀初是動物進化史上可謂空前絕後的實驗時期。[159]後來對類似動物的發現及新理論方法的發展產生了這樣的結論:許多「奇怪的奇蹟」實際上是現代生物門類的「表親」[160]—例如,歐巴賓海蠍所屬的葉足動物中包含了節肢動物的祖先,可能與現代的緩步動物關係密切。[161]關於寒武紀大爆發是否真的是「爆發」、它是如何發生的、為什麼在動物演化史上獨一無二,仍有很多爭論。[162]

寒武紀大爆發之爭核心的動物大多都是原口動物,是複雜動物的兩個主要分支之一。另一支叫後口動物,包含海星、海膽等無脊椎動物,及脊索動物(下詳)。許多棘皮動物都有堅硬的方解石「外殼」,這在早寒武紀小殼動物群中相當常見。[158]其他後口動物身體柔軟,大多數重要的寒武紀後口動物化石都來自中國澄江動物群。[164]脊索動物是另一支重要的後口動物分支,指具有明顯背神經索的動物。脊索動物包括軟體的無脊椎動物,如被囊動物亞門,以及脊椎動物—有脊椎的動物。被囊動物化石可追溯回寒武紀大爆發,[165]但澄江動物群中的海口魚和豐嬌昆明魚似乎是真正的脊椎動物,[30]海口魚有明顯的椎骨,可能發生輕微生物礦化。[166]棘魚綱等有頜脊椎動物,首次出現在晚奧陶世。[167]志留紀蘭多維列世有頜脊椎動物發生第一次輻射演化[168][169][170]。
登陸
適應陸上生活是個重大挑戰:所有陸生生物都要對抗乾燥,所有超過微觀尺寸的生物都必須創造特殊結構以對抗重力,呼吸和氣體交換系統也必須革新,生殖系統也不能再依靠水攜帶卵與精子。[171]:120–122[172][173]最早的陸生動植物的良好證據可以追溯到奧陶紀(4.88-4.44億年前),且一些微生物更早時候就已經登上了陸地,[174][175]現代陸地生態系統則遲至晚泥盆世,3.85-3.59億年前才產生。[176]2017年5月,西澳大利亞州皮爾巴拉克拉通34.8億年前的矽華及其他有關礦藏(溫泉和間歇泉周圍常見)中,發現了已知最早的陸上生命的證據。[177][178]2018年7月,科學家報告說,陸上最早的生命可能是32.2億年前的某種細菌。[179]2019年5月,科學家報告說加拿大北部新發現一種真菌化石Ourasphaira giraldae,可能在10億年前就已經在陸地上生長了,這遠早於植物在陸地上生活的時間。[180][181][182]
5億年前動植物開始進入河流和陸地時,海洋礦物質抗氧化劑大環境不復存在,是對陸地生命進化的挑戰。[183][184]
實際上,被子植物(當今最主要的植物種類)和它們的大部分抗氧化劑都產生於晚侏羅世。植物用各種抗氧化劑保護它們的結構免受光合作用中產生的活性氧類影響。動物也直接暴露在同樣的氧化劑中,它們已經進化出了內源抗氧化酶系統。[185]碘離子I-是海陸生物飲食中最原始、最豐富的富電子元素,作為電子供體在從原始海洋藻類到陸地脊椎動物的幾乎所有生物體中都充當著抗氧化劑。[186]
土壤指礦物微粒與分解的有機物質的組合,在生物登陸之前尚不存在。地表要麼是裸露的岩石,要麼是風化作用產生的沙子。水和營養物質都會很快消失。[176]以瑞典次寒武紀準平原為例,新元古代風化作用形成的高嶺土最大深度約為5米,相比之下中生代形成的高嶺土礦床要厚得多。[187]有人認為,因為陸上缺乏植物,新元古代末的地表侵蝕以片狀侵蝕為主。[188]

藍細菌雖然不是植物,但應用著相同的光合作用機制。現代沙漠等不適合維管植物生長的地方還分布著藍細菌薄膜,這說明菌毯可能是第一批在乾燥的陸地上定居的生物,可能前寒武紀就已經如此。形成菌毯的藍細菌在從海洋向潮間帶擴張,進而登陸的過程中,可能逐漸演化出了對抗乾燥的能力。[176]地衣是一種真菌(幾乎總是子囊菌門)和光合作用者(綠藻或藍菌)共生的組合,[189]也是無生命環境的重要「殖民者」,[176]它們可以分解岩石,有助於在植物尚無法生存的環境中實現成土。[189]已知最早的子囊菌化石出現在4.23-4.19億年前的志留紀。[176]
在能鑽地的動物出現之前,土壤形成得非常慢。動物可以混合土壤的礦物質和有機質,其糞便是有機質的重要來源。[176]奧陶紀沉積物中已經發現了環節動物或軟體動物鑽出的洞。[176][190]


水生藻類幾乎所有細胞都能獨立進行光合作用。陸上的環境要求植物的內部變得更複雜、專門化:光合作用在頂部最有效率;為從地下提取水,要有根;兩者間要有支撐自身重量的支撐系統及水與養分的運輸系統。[171][191]
4.76億年前的中奧陶世岩石中發現了陸地植物的孢子,可能屬於地錢門。4.3億年前志留紀文洛克世的岩石中,已經發現了石松門植物化石,如巴拉曼蕨屬。它們大都矮於10 cm,有些似乎已經具備了維管植物的形態。[191]
到3.7億年前的晚泥盆世,古蕨屬的樹木是如此之多,以至於它們牢牢束縛著土壤的根將原先辮狀河占主導的陸地河流系統改造成了曲流。[192]它們造成了「晚泥盆世樹木危機」[193]:
動物不得不改造自己的進食和排泄系統,大多數陸地動物還演化出體內受精。[173]水和空氣折射率的差異推動眼睛的演化。運動和呼吸變得更容易了一些,空氣中高頻聲音的傳播催生了聽覺。[172]

已知最古老的呼吸空氣的動物是中志留世428 Ma的原多足總目呼氣蟲。[195][196]它呼吸空氣的陸生性質可通過氣孔的存在得以證明。[197]4.9億年前一些寒武紀-奧陶紀交界處的遺蹟化石被解釋為大型兩棲節肢動物在沿海沙丘上的足跡,可能屬於直蟹綱物種,[198]在進化上相當於多足類的「姑姑」。[199]4.45億年前晚奧陶世以上的其他遺蹟化石可能來自陸地無脊椎動物,且有明確證據表明,4.15億年前,在志留紀-泥盆紀邊界之前不久,海岸和沖積平原上已經有了許多節肢動物,還有節肢動物吃植物的跡象。[200]節肢動物很好地擴展適應了陸上生活,它們現有的有節外骨骼提供了防止乾燥的保護,對重力的支撐,以及不依賴於水的運動方式。[173][201]:126
其他主要無脊椎動物類群在陸地上的化石記錄很稀少:非寄生性扁形動物門、線蟲動物門和紐形動物門的完全沒有;一些寄生性線蟲可見於琥珀;環節動物化石自石炭紀開始出現,但可能仍是水生的;腹足綱陸上化石自晚石炭世開始出現,可能要等到植物凋落物足夠豐富才能登陸。[172]
飛行昆蟲最早的化石也來自晚石炭世,但昆蟲很可能在早石炭世甚至晚泥盆世就演化出了飛行能力。這使它們有更多可以覓食繁衍的生態位,以及躲避捕食者和環境中不利變化的手段。[202]:155–160現代昆蟲物種約99%都會飛,或是會飛物種的後代。[202]:12

四足類是具有四肢的脊椎動物,在晚泥盆世(3.7-3.6億年前)從其他扇鰭類魚類演化而來。[205]早期類群被歸為迷齒亞綱。它們保留了水生的魚苗樣蝌蚪,仍可見於今日的滑體亞綱。
碘和T4/T3刺激了兩棲動物的蛻變與神經系統的演化,將水生素食蝌蚪轉變為「更進化的」陸生肉食青蛙,具備更優良的神經系統、視覺空間、嗅覺和認知狩獵能力。[183]T3新的激素作用是通過在脊椎動物細胞中形成T3受體實現的。首先,約6-5億年前,原始脊椎動物中出現了用於變態發育的αT3受體;約2.5-1.5億年前,鳥類和哺乳動物體內又出現了具有代謝、產熱作用的βT3受體。[206]
1950年代到1980年代初,人們都認為四足動物是由可能是為了在水塘間遷移而能在地上爬行的魚類演化而來。然而1987年發現的3.63億年前近乎完整的棘石螈屬化石表明,這種晚泥盆世過渡動物既有腿,也有肺和鰓,但還不太可能在地上生存:它四肢腕踝關節太弱,承受不了自重;它的肋骨太短,無法防止肺被重力壓成扁平狀;魚一樣的尾鰭會因在地上拖動而損壞。目前的假設是,長約1米的棘石螈是一種完全水生的掠奪者,它一般在淺水區捕食,埋伏時用四肢抓緊植物。它的骨骼也與大多數魚類不同,這使它能在身體被淹沒的情況下抬頭呼吸空氣:它的下頜使其可以「吞咽」空氣;它頭骨後面的骨頭融合在一起,為抬頭用的肌肉提供有力的連接點;頭部不與胸帶直接相連,而是有明顯的脖子。[203]
泥盆紀陸生植物的擴張可能利於解釋為什麼呼吸空氣會成為演化優勢。落入河流的樹葉會促進水生植被的生長;這會吸引素食無脊椎動物和捕食它們的小魚;它們是有吸引力的獵物,但這環境並不適合大型海洋捕食性魚類;因為這些水域會缺少氧氣,溫水的溶解氧比冷的海水少,而且植被的分解會使用一些氧氣,由此,直接呼吸空氣成為一種近乎迫不得已的選擇。[203]
後來的發現表明,棘石螈和完全類似魚類的動物之間還有更早的過渡形式。[207]倒霉的是,四足類祖先的化石和中石炭世似乎完全適應了陸地生活的脊椎動物化石間有一個大約3000萬年的空缺期(柔默空缺),這一時期只發現了很少量的化石,其四肢末端分為五個趾,說明真四足類是在約3.5億年前的空缺中間演化出來的。空缺後一部分化石所屬的動物看起來像是現代兩棲動物的早期品種,有保持皮膚濕潤、在水中產卵的特徵;另一些化石則具備羊膜動物的特徵,其防水的皮膚和卵膜使它們能遠離水生活與繁殖。[204]石炭紀雨林崩潰事件可能為羊膜動物勝過兩棲動物鋪平了道路。
羊膜動物 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
羊膜動物的卵可以保存在乾燥的環境中,可能出現於晚石炭世(3.3億年前)。羊膜動物合弓綱和蜥形綱兩支的最早化石可追溯至3.13億年前的石炭紀末。[209][210]合弓綱盤龍目及其後代獸孔目是最常見的二疊紀陸地脊椎動物。但當時這些化石都集中在中緯度溫帶地區,有證據表明靠近赤道的更熱、更乾燥的環境中,生活的主要是兩棲動物和蜥形綱。[211]
二疊紀-三疊紀滅絕事件幾乎消滅了所有陸地脊椎動物,[212]也消滅了絕大部分其他生物。[213]在後續緩慢的恢復過程中(約3000萬年),[214]以前默默無聞的蜥形綱一躍成為最豐富、最多樣的陸生脊椎動物:晚二疊世岩層中發現了少量主龍形類化石,[215]但到中三疊世,主龍類就已經成為了最主要的陸生脊椎動物。到晚三疊世恐龍脫穎而出,成為侏羅紀至白堊紀最重要的陸地脊椎動物。[216]
一些小型掠食獸腳亞目恐龍在晚侏羅世演化為鳥類。[217]:210–231第一批鳥類從恐龍那裡繼承了牙齒和長骨質尾巴,[217]有些鳥類到侏羅紀末尾已經演化出角質、無齒的鳥喙[218],到早白堊世演化出尾綜骨。[219]
古蜥類和恐龍在三疊紀蒸蒸日上時,合弓綱的後代哺乳形類演化為小型夜間食蟲動物。這種生態位可能促進的哺乳動物的演化,例如夜間生活可能加速了恆溫和體毛的發展。[220]到1.95億年前的早侏羅世,有些動物已經非常像今日的哺乳動物了。[221]不幸的是,整個中侏羅世的化石記錄都接近空白。[222]馬達加斯加發現的牙齒化石表明,到1.67億年前時,單孔目已經與其他哺乳動物發生了分化。[223]非鳥恐龍在支配陸地大約1.5億年後,在白堊紀﹣古近紀滅絕事件(6600萬年前)中與其他許多生物群一同滅亡。[224]哺乳動物整個恐龍時代都被限制在狹小的分類單元內,體型和種群大小也維持在很低的水平,但在大滅絕後,其大小和多樣性飛速增加,[225][226]蝙蝠在1300萬年內飛上天空,[227]鯨豚類在1500萬年內重回大海。[228]
第一朵花大約開在1.3億年前。[231]被子植物共有約25-40萬種,數量遠超其他所有地面植物之和,是大多數陸地生態系統的主要植被。有化石證據表明,被子植物在早白堊世迅速多樣化,[229][230]與傳粉昆蟲的興起密切相關。[230]在現代被子植物中,玉蘭屬被認為接近此類植物的共同祖先。[229]但古生物學家還沒能成功識別出開花植物進化的最早階段。[229][230]

社會性昆蟲之所以引人注目,是因為每個群落的絕大多數個體都不育。這似乎與自然選擇、自私基因等進化的基本概念相悖。事實上,很少有真社會性的昆蟲物種:在大約2600個現存昆蟲科中,僅有15個科含有部分的社會性,而且節肢動物中真社會性似乎只獨立進化了12次,儘管有些真社會性已經多樣化到幾個科。但社會性昆蟲的成功是十分驚人的:儘管螞蟻和白蟻只占已知昆蟲物種的約2%,但它們構成了昆蟲質量的50%以上。它們掌控自己領地的能力似乎是它們成功的基礎。[232]
大多數個體為何犧牲繁殖機會,長期以來一直被解釋為這些物種罕見的染色體倍性性別決定系統的影響。同一個蟻后的兩個不育的工蟻彼此分享的基因要比它們理論上的後代還要多。[233]但艾德華·威爾森和伯特·霍爾多布勒認為,這種解釋是錯誤的:它基於親屬選擇,但沒有證據表明在有多個蟻后的群落中存在裙帶關係。相反,他們認為只有受捕食者和競爭者強大壓力的物種,處於可以建造「堡壘」的環境中才會演化出真社會性。在蟻群初步建立這種安全之後,它們可以通過合作覓食獲得其他優勢。他們發現濱鼠科也演化出了真社會性,[232]而且它們不是單倍體。[234]
最早的昆蟲化石發現於約4億年前的早泥盆世岩層,只有少數不會飛的昆蟲。約3億年前晚石炭世的馬孫溪化石層中有約200種昆蟲,其中一些以現代標準來看十分巨大,且表明當時昆蟲已占據了植食性動物、食碎屑動物和食蟲動物等代表性生態位。社會性白蟻和螞蟻首次出現在早白堊世,先進的社會性蜜蜂出現在晚白堊世,但到新生代中期才變得豐富起來。[235]
現代人和其它生命都由一個古老的、共同的祖先進化而來,這一觀點是羅伯特·錢伯斯於1844年提出來的,後來查爾斯·達爾文在1871年採納。[236]現代人是從一種直立猿類進化而來,可追溯到600萬年前的查德沙赫人。[237]驚奇南方古猿大約於250萬年前開鑿了已知最早的石器,動物骨骼上發現了石器的劃痕。[238]最早的人亞科物種腦容量近似黑猩猩,但在過去300萬年中增加了4倍;一項統計分析表明,人科大腦大小几乎完全取決於化石年代,所屬的物種之間相差很小。[239]現代人類是自各地同時進化出來還是非洲一個小種群的後代並在不到20萬年時間裡遷移到世界各地並取代以前的人種,存在著長期的爭議。[240]:87–89解剖學意義上的現代人類在10萬年前是否有智力、文化和技術上的「大躍進」也有爭議,這可能是從化石中看不到的神經系統變化造成的。[241]
大滅絕事件
至少從5.42億年前開始,地球上的生命就偶爾遭受大規模滅絕。雖然在當時是災難,但大規模滅絕有時也加速了生命的演化。特定生態位的主導地位能在生物群落間轉移,通常是滅絕事件消滅了舊主導群落,很少是因為新主導群落能在自然選擇中勝過舊群落。[37][242]
化石記錄似乎顯示,大規模滅絕之間的間隔越來越長,平均滅絕率和背景滅絕率都在下降。這兩種現象都可以用某種方式來解釋:[243]
- 過去5億年中,海洋變得對生命更友好,更不易發生大規模滅絕:溶解氧變多,並滲透到更深的地方;陸上生命的發展減少了養分的流失,從而減少了富營養化和缺氧事件的風險;海洋生態系統變得更加多樣化,食物鏈越來越難被打破。[244][245]
- 完整的化石非常少見,絕大多數已滅絕生物都只有身體一部分的化石,且年代越早完整化石越罕見。因此古生物學家錯誤地將同一生物的不同部分歸為不同物種,這些分類往往只是為了解釋這種錯誤的發現而建立的—比如奇蝦的故事。年代越古老,發生這種錯誤的可能性越大,因為這些化石往往既不像任何生物體的一部分,又常常保存得很差。許多「多餘」的屬僅包含一兩塊不再被發現的碎片,顯得像這「多餘」的屬很快就滅絕了似的。[243]
化石記錄中的生物多樣性,即「……在任何特定時間還存在的單獨屬的數量;即那些首次出現在該時刻之前和最後出現在該時刻之後的屬」[246]顯示出不同的趨勢:從542到400 Ma相當快速地上升;400到200Ma略有下降,其中毀滅性的二疊紀-三疊紀大滅絕事件是重要因素;200Ma至今迅速上升。[246]
另見
注釋
腳註
參考資料
閱讀更多
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads