Loading AI tools
mathematische Größe in der Geometrie Aus Wikipedia, der freien Enzyklopädie
Ein Winkel ist in der Geometrie ein Teil der Ebene, der von zwei in der Ebene liegenden Strahlen (Halbgeraden) mit gemeinsamem Anfangspunkt begrenzt wird.
Der gemeinsame Anfangspunkt der beiden Strahlen wird Scheitelpunkt des Winkels, Winkelscheitel oder kurz Scheitel genannt; die Strahlen heißen Schenkel des Winkels oder Winkelschenkel. Ein Winkel kann durch drei Punkte festgelegt werden, von denen einer den Scheitel des Winkels bildet und die beiden anderen auf je einem Schenkel des Winkels liegen.
Die physikalische Größe, die die relative Lage der Strahlen zueinander beschreibt, wird als Winkelweite oder Winkelabstand (Winkeldistanz) bezeichnet, üblicherweise auch verkürzend als Winkel, wenn eine Unterscheidung von dem geometrischen Objekt nicht notwendig ist, beispielsweise in der Physik. Die Größe des Winkels wird mit einem Winkelmaß angegeben.
Die Winkelweite kann auch als Maß einer ebenen Drehung definiert werden.
Zur Unterscheidung vom Raumwinkel wird der hier definierte Winkel auch als ebener Winkel bezeichnet.
In der Geometrie sind zur Definition des Winkels als Objekt verschiedene Ansätze möglich. Dabei lassen sich zwei Typen unterscheiden:
Die eingangs angeführte Definition zweier von einem Punkt ausgehenden Strahlen ist in die Anwendungen wie etwa die Koordinatensysteme und deren Achsen eingebunden.
Der Winkel ist ein geometrisches Gebilde bestehend aus zwei Halbgeraden mit demselben Ursprung.
Über die „ursprünglichen“ Geraden ermöglicht diese Darstellung etwa Betrachtungen über die verschiedenen Winkelpaare.
Der Winkel (besser: das Winkelfeld) ist ein Teilbereich der Zeichenebene, der von zwei Halbstrahlen oder Halbgeraden begrenzt wird. Diese bilden den Rand, und der Rest des Winkelfeldes das Innere. Diese Definition wird im Schulunterricht verwendet und betont das „Körperhafte“ des Gebildes und dient – über die Festlegung eines Innen- und Außenraums – der Einführung in die Dreiecksgeometrie: Das Dreieck lässt sich als Schnittmenge zweier Winkel mit einem gemeinsamen Schenkel definieren.
Ad hoc ist bei diesen drei Ansätzen der Winkel ein ungerichteter Winkel, erst eine zusätzliche Auszeichnung einer der beiden Halbstrahlen oder Halbgeraden als die „erste“ ermöglicht die Angabe eines gerichteten Winkels.
Man kann auch sagen, dass ein Winkel durch eine Drehung eines Strahls oder einer Halbgeraden in einer Ebene um seinen bzw. ihren Anfangspunkt entsteht.
Da der Strahl auf zwei verschiedene Möglichkeiten gedreht werden kann, muss zusätzlich die Drehrichtung angegeben werden:
In der Mathematik ist es üblich, die Drehung gegen den Uhrzeigersinn – also im mathematisch positiven Drehsinn – auszuführen. Wenn die Drehung andersherum erfolgen soll, sollte dies ausdrücklich angegeben werden.
In der Geodäsie (Vermessungswesen) wird der Winkel im Uhrzeigersinn, also rechtsdrehend von 0 gon bis 400 gon gezählt. Da in der Geodäsie per Definition keine negativen Winkel existieren, ist der Drehsinn positiv. Analog zur Uhr, auch hier wird von 0 bis 24 h positiv, rechtsdrehend gezählt. Alle geodätischen Messinstrumente werden zur Richtungs- oder Winkelmessung rechtsherum gedreht.
Die Angabe eines Winkels erfolgt nach DIN 1302 oder ISO 80000-2.
Für den Formelsatz steht das Zeichen »∠« (HTML ∠
/∠
, TeX \angle
, Unicode U+2220) zur Verfügung, für den gerichteten Winkel auch »∡« (TeX \measuredangle
, U+2221 measured angle, keine HTML-Entität), die sich beide im Unicode-Block Mathematische Operatoren finden. Das liegende Winkelzeichen entspricht den angloamerikanischen Gewohnheiten, im europäischen Formelsatz ist ein Zeichen üblich, das dem amerikanischen »∢« U+2222 für den Raumwinkel zum Verwechseln ähnlich sieht. »∠« findet auch für Neigung und Winkligkeit (Lagetoleranz, DIN EN ISO 1101) Verwendung. Speziell für den rechten Winkel verwendet man alternativ einen Winkel ohne Zusatz »∟«, einen Winkel mit Bogen und Punkt »⦝« oder einen Winkel mit Bogen »⊾«, in der Technik auch einen Winkel mit Quadrat »⦜« oder das Zeichen für Orthogonalität .
Ausführliche Informationen bietet der Hauptartikel Winkelmaß, Umrechnungen sind bei den einzelnen Maßen zu finden.
Winkelmaß | Maßeinheit | 1 Vollwinkel = | Einheitenzeichen |
---|---|---|---|
— | Vollwinkel | 1 | |
Bogenmaß | Radiant | 2π | rad |
Gradmaß | Grad (Bogenminute, Bogensekunde) | 360 | ° (′, ″) |
Geodätisches Winkelmaß | Gon (veraltet: Neugrad) | 400 | gon (veraltet: g) |
Zeitmaß | Stunden, Minuten, Sekunden | 24 | h, m, s |
— | Nautischer Strich | 32 | ¯ |
— | Artilleristischer Strich (Schweiz: Artilleriepromille) | 6400 | mil (A‰) |
— | Prozent, Promille | nichtlinear | %, ‰ |
Weitere Formen der Angabe eines Winkels:
[°] | [rad] (mit ) | [rad] (mit ) | [] | |
---|---|---|---|---|
Nullwinkel | ||||
spitzer Winkel < Vollwinkel | ||||
rechter Winkel = Vollwinkel | ||||
stumpfer Winkel > Vollwinkel und < Vollwinkel | ||||
gestreckter Winkel = Vollwinkel | ||||
überstumpfer (erhabener) Winkel > Vollwinkel und < 1 Vollwinkel |