cover image

Hilbertruimte

Uit Wikipedia, de vrije encyclopedie

In de functionaalanalyse, een deelgebied van de wiskunde, is een hilbertruimte, vernoemd naar de Duitse wiskundige David Hilbert, een abstracte reële of complexe vectorruimte die voorzien is van de extra structuur van een inwendig product. Een hilbertruimte is een algemene vorm van het begrip euclidische ruimte en breidt de methoden van de lineaire algebra en de analyse van het tweedimensionale euclidische vlak en de driedimensionale ruimte uit naar ruimten met een eindig of oneindig aantal dimensies.

Harmonic_partials_on_strings.svg
Hilbert-ruimten kunnen worden gebruikt om de harmonische reeksen van trillende snaren te bestuderen.

Hierdoor zijn de begrippen lengte en hoek in een hilbertruimte gedefinieerd en kunnen lengten en hoeken in een hilbertruimte altijd gemeten worden. In aanvulling hierop vereist men verder dat hilbertruimten volledig met betrekking tot de daardoor gedefinieerde norm zijn. Volledigheid houdt in dat een hilbertruimte een voldoende aantal limieten kent, zodanig dat de technieken van de analyse kunnen worden gebruikt in een hilbertruimte.

Hilbertruimten blijken van nature voor te komen in de wiskunde, natuurkunde en de technische wetenschappen, meestal als oneindigdimensionale functieruimten. Vanuit dit gezichtspunt werden de vroegste hilbertruimten in het eerste decennium van de 20e eeuw ook bestudeerd door David Hilbert, Erhard Schmidt en Frigyes Riesz. Hilbertruimten zijn onmisbare hulpmiddelen in de theorieën van partiële differentiaalvergelijkingen, de kwantummechanica, de fourier-analyse (met inbegrip van toepassingen in de signaalverwerking) en de ergodentheorie, die de wiskundige onderbouwing vormt voor de studie van de thermodynamica. John von Neumann bedacht 'hilbertruimte' voor het abstracte begrip dat 'ten grondslag ligt aan veel van deze uiteenlopende toepassingen'. Het succes van de methoden van de hilbertruimte luidde het begin in van een zeer vruchtbare periode voor de functionaalanalyse. Afgezien van de klassieke euclidische ruimten zijn voorbeelden van hilbertruimten ruimtes van kwadratisch integreerbare functies, rijruimten, sobolev-ruimten, bestaande uit veralgemeende functies en hardy-ruimten van holomorfe functies.

Meetkundige intuïtie speelt een belangrijke rol in veel aspecten van de hilbertruimtetheorie. Analoga van de stelling van Pythagoras en de parallellogramwet zijn geldig in een hilbertruimte. Op een dieper niveau spelen loodrechte projecties op een deelruimte (het analogon van het bepalen van de hoogtelijn in een driehoek) een belangrijke rol in optimalisatieproblemen en andere aspecten van de theorie. Een element van een hilbertruimte kan uniek worden bepaald door zijn coördinaten met betrekking tot een verzameling van coördinaatassen (een orthonormale basis), in analogie met cartesiaanse coördinaten in het vlak. Als deze verzameling van coördinatenassen aftelbaar oneindig is, betekent dit dat een hilbertruimte ook beschreven kan worden in termen van oneindige rijen die kwadratisch optelbaar zijn. Lineaire afbeeldingen op een hilbertruimte zijn eveneens vrij concrete objecten: in veel gevallen zijn het transformaties die de ruimte met verschillende factoren in onderling loodrechte richtingen oprekken of inkrimpen in een betekenis die gepreciseerd wordt door het bestuderen van hun spectrum.

Elke hilbertruimte is een banachruimte, maar niet alle banachruimten zijn hilbertruimten. Als een banachruimte een hilbertruimte is, kan men het inwendig product van de hilbertruimte op eenduidige wijze reconstrueren uit de normfunctie.

Oops something went wrong: