Лучшие вопросы
Таймлайн
Чат
Перспективы

Плосконосая тришестиугольная мозаика

Из Википедии, свободной энциклопедии

Плосконосая тришестиугольная мозаика
Remove ads

Плосконосая шестиугольная мозаика (или плосконосая тришестиугольная мозаика) — это полуправильная мозаика на евклидовой плоскости. В каждой вершине имеется четыре треугольника и один шестиугольник. Мозаика имеет символ Шлефли sr{3,6}. Плосконосая четырёхшестиугольная мозаика?! связана с гиперболической мозаикой с символом Шлефли sr{4,6}.

Подробнее sr{6,3} или ...

Конвей назвал мозаику snub hextille (плосконосый шестипаркет), построенной с помощью операции отсечения углов и применённой к шестиугольному паркету (hextille).

Существует на плоскости 3 правильные и 8 полуправильных мозаик[англ.]. Только одна не имеет отражения в качестве симметрии.

Существует только одна однородная раскраска плосконосой тришестиугольной мозаики (а именно, раскраска с индексами (3.3.3.3.6): 11213.)

Remove ads

Упаковка окружностей

Плосконосая тришестиугольная мозаика может быть использована как упаковка кругов, если разместить круги одинакового радиуса с центром в каждой вершине. Любая окружность соприкасается с 5 другими окружностями упаковки (контактное число)[1]. Область решётки (красный ромб) содержит 6 различных окружностей. Шестиугольные дыры могут быть заполнены в точности одной окружностью, что приводит к плотной упаковке окружностей.

Thumb

Remove ads

Связанные многогранники и мозаики

Суммиров вкратце
Перспектива
Thumb
Существует одна связная 2-однородная мозаика, которая смешивает конфигурации вершин плосконосой тришестиугольной мозаики (3.3.3.3.6) и треугольной мозаики (3.3.3.3.3.3).
Подробнее Однородные шестиугольные/треугольные мозаики, Фундаментальные домены ...

Варианты симметрии

Эта полуправильная мозаика является членом последовательности усечённых многогранников и мозаик с вершинной фигурой (3.3.3.3.n) и диаграммой Коксетера — Дынкина node_hnnode_h3node_h. Эти фигуры и их двойственные имеют (n32) вращательную симметрию[англ.] и являются мозаикой в евклидовой плоскости для n=6 и в гиперболической плоскости для всех больших n. Серию можно считать начинающейся с n=2 с одним набором граней, вырожденных в двуугольники.

Подробнее n32 симметрии плосконосых мозаик: 3.3.3.3.n, Симметрия n32 ...

Цветочная пятиугольная мозаика

Подробнее Цветочная пятиугольная мозаика ...

Цветочная пятиугольная мозаика или розеточная пятиугольная мозаика является двойственной полуправильной мозаикой евклидовой плоскости. Это одна из 15 известных изоэдральных пятиугольных мозаик. Название мозаика получила за сходство шести пятиугольных плиток на цветок, лепестки которого расходятся из центральной точки[2]. Конвей назвал эту мозаику 6-fold pentille (6-кратный пятипаркет)[3]. Каждая грань мозаики имеет четыре угла 120° и один угол 60°.

Мозаика является двойственной для (однородной) плосконосой тришестиугольной мозаики[4] и имеет вращательную симметрию порядка 6-3-2.

Thumb

Вариации

Цветочная пятиугольная мозаика имеет геометрические вариации с неравными длинами сторон и вращательной симметрией, которая является моноэдральной пятиугольной мозаикой типа 5. В одном из пределов длина ребра стремится к нулю и мозаика становится дельтоидной тришестиугольной мозаикой[англ.].

Thumb
(См. анимацию)
Thumb
a=b, d=e
A=60°, D=120°
Thumb
Дельтоидная тришестиугольная мозаика
Thumb
a=b, d=e, c=0
60°, 90°, 90°, 120°

Связанные мозаики

Подробнее Симметрия: [6,3], (*632), [6,3]+, (632) ...
Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads