Лучшие вопросы
Таймлайн
Чат
Перспективы
Возведение в степень
математическая операция Из Википедии, свободной энциклопедии
Remove ads
Возведе́ние в сте́пень (устар. возвыше́ние в сте́пень[1]) — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием и натуральным показателем обозначается как

где — количество множителей (умножаемых чисел)[2][К 1].
Например,
В языках программирования, где написание невозможно, применяются альтернативные обозначения.
Возведение в степень может быть определено также для отрицательных, рациональных, вещественных и комплексных степеней[2].
Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени и показателя находит неизвестное основание . Вторая обратная операция — логарифмирование, она по известным значениям степени и основания находит неизвестный показатель . Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень.
Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.
Remove ads
Употребление в устной речи
Запись обычно читается как «a в -й степени» или «a в степени n». Например, читается как «десять в четвёртой степени», читается как «десять в степени три вторых (или: полтора)».
Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, читается как «десять в квадрате», читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо , древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[3].
Число, являющееся результатом возведения натурального числа в -ую степень, называется точной -ой степенью. В частности, число, являющееся результатом возведения натурального числа в квадрат (куб), называется точным квадратом (кубом). Точный квадрат также называется полным квадратом.
Remove ads
Свойства
Суммиров вкратце
Перспектива
Основные свойства
Все приведённые ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[4]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени.
Запись не обладает свойством ассоциативности (сочетательности), то есть, в общем случае, Например, , а . В математике принято считать запись равнозначной , а вместо можно писать просто , пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения[какой?].
Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, , например, , но Причём во втором случае, когда основание больше показателя, результат получается меньше, чем в обратном случае: иначе говоря, когда ,
Таблица натуральных степеней небольших чисел
Свойство степеней чисел
Всякая степень числа есть сумма сто́льких последовательных нечётных чисел, сколько единиц в основании степени.
Remove ads
Расширения
Суммиров вкратце
Перспектива
Целая степень
Операция обобщается на произвольные целые числа, включая отрицательные и ноль[5]::
Результат не определён при и .
Рациональная степень
Возведение в рациональную степень где — целое число, а — натуральное, положительного числа определяется следующим образом[5]:
- .
Степень с основанием, равным нулю, определяют только для положительного рационального показателя.
Для отрицательных степень с дробным показателем не рассматривается.
Следствие: Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.
Вещественная степень
Множество вещественных чисел — непрерывное упорядоченное поле, обозначается . Множество вещественных чисел не является счётным, его мощность называется мощностью континуума. Арифметические операции над вещественными числами представимых бесконечными десятичными дробями определяются как непрерывное продолжение[6] соответствующих операций над рациональными числами.
Если даны два вещественных числа, представимые бесконечными десятичными дробями (где — положительное):
определённые соответственно фундаментальными последовательностями рациональных чисел (удовлетворяющие условию Коши), обозначенные как: и , то их степенью называют число , определённое степенью последовательностей и :
- ,
вещественное число , удовлетворяет следующему условию:
Таким образом степенью вещественного числа является такое вещественное число которое содержится между всеми степенями вида с одной стороны и всеми степенями вида с другой стороны.
Степень с основанием, равным нулю, определяют только для положительного вещественного показателя.
Для отрицательных степень с вещественным показателем не рассматривается.
На практике для того, чтобы возвести число в степень , необходимо заменить их с требуемой точностью приближёнными рациональными числами и . За приближенное значение степени берут степень указанных рациональных чисел . При этом не важно, с какой стороны (по недостатку или по избытку) взятые рациональные числа приближают и .
Пример возведения в степень , с точностью до 3-го знака после запятой:
- Округляем данные числа до 4-го знака после запятой (для повышения точности вычислений);
- Получаем: ;
- возводим в степень: ;
- Округляем до 3-го знака после запятой: .
Полезные формулы:
Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции , и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.
Комплексная степень
Возведение комплексного числа в натуральную степень выполняется обычным умножением в тригонометрической форме. Результат однозначен:
- , (формула Муавра)[7].
Для нахождения степени произвольного комплексного числа в алгебраической форме можно воспользоваться формулой бинома Ньютона (справедливой и для комплексных чисел):
- .
Заменяя степени в правой части формулы их значениями в соответствии с равенствами: , получим:
Основой для более общего определения комплексной степени служит экспонента , где — число Эйлера, — произвольное комплексное число[9].
Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:
Этот ряд абсолютно сходится для любого комплексного поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для :
В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:
Общий случай , где — комплексные числа, определяется через представление в показательной форме: согласно определяющей формуле[9]:
Здесь — комплексный логарифм, — его главное значение.
При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[9]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество в степень Слева получится справа, очевидно, 1. В итоге: что, как легко проверить, неверно. Причина ошибки: возведение в степень даёт и слева, и справа бесконечное множество значений (при разных ), поэтому правило здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа отсюда видно, что корень ошибки — путаница значений этого выражения при и при
Remove ads
Степень как функция
Суммиров вкратце
Перспектива
Разновидности
Поскольку в выражении используются два символа ( и ), то его можно рассматривать как одну из трёх функций.
- Функция переменной (при этом — постоянная-параметр). Такая функция называется степенной. Обратная функция — извлечение корня.
- Функция переменной (при этом — постоянная-параметр). Такая функция называется показательной (частный случай — экспонента). Обратная функция — логарифм.
- Функция двух переменных Отметим, что в точке эта функция имеет неустранимый разрыв. В самом деле, вдоль положительного направления оси где она равна единице, а вдоль положительного направления оси где она равна нулю.
Ноль в степени ноль
Выражение (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:
можно записать короче:
Следует предостеречь, что соглашение чисто символическое, и оно не может использоваться ни в алгебраических, ни в аналитических преобразованиях из-за разрывности функции в этой точке.
Remove ads
История
Суммиров вкратце
Перспектива
Обозначение
В Европе сначала степень величины записывали словесными сокращениями (q или Q обозначало квадрат, c или C — куб, bq или qq — биквадрат, то есть 4-я степень и т. д.) или как произведение — например, изображалось как Отред записывал следующим образом: (если неизвестная всего одна, ей часто не присваивался буквенный значок)[10]. Немецкая школа коссистов для каждой степени неизвестной предлагала особый готический значок.
В XVII веке постепенно стала преобладать идея явно указывать показатель степени. Жирар (1629 год) для возведения в степень числа ставил показатель в круглых скобках перед этим числом, а если числа правее показателя не было, то это значило, что подразумевается наличие неизвестного в указанной степени[11]; например, у него означало . Варианты размещения показателя степени предлагали Пьер Эригон и шотландский математик Джеймс Юм, они записывали в виде и соответственно[12].
Современная запись показателя степени — правее и выше основания — введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2 (возведение в квадрат ещё долгое время обозначалось по-старому, произведением). Позднее Валлис и Ньютон (1676) распространили декартову форму записи степени на отрицательные и дробные показатели, трактовка которых к этому времени уже была известна из трудов Орема, Шюке, Стевина, Жирара и самого Валлиса. К началу XVIII столетия альтернативы для записи степеней «по Декарту», как выразился Ньютон в «Универсальной арифметике», «вышли из моды» (out of fashion). Показательная функция, то есть возведение в переменную степень, появилась сначала в письмах, а потом и в трудах Лейбница (1679). Возведение в мнимую степень обосновал Эйлер (1743)[12][13].
Запись возведения в степень в языках программирования
С появлением компьютеров и компьютерных программ возникла проблема, состоящая в том, что в тексте компьютерных программ невозможно записать степень в «двухэтажном» виде. В связи с этим изобрели особые значки для обозначения операции возведения в степень. Первым таким значком были две звёздочки: «**
», используемые в языке Фортран. В появившемся несколько позже языке Алгол использовался значок стрелки: «↑
» (стрелки Кну́та). Во второй редакции ASCII символ стрелки был заменён символом «циркумфлекс» (^
, на жаргоне его также называют «шапочка» (hat) и «карет»). Разработчикам языков программирования было предложено использовать комбинацию из циркумфлекса и вертикальной черты, чтобы изобразить стрелку, однако такой вариант не получил распространения, и в этом качестве стали использовать просто символ циркумфлекса[14]. Примеры:
3^2 = 9
;5^2 = 25
;2^3 = 8
;5^3 = 125
.
Иногда в компьютерных системах и языках программирования значок возведения в степень имеет левую ассоциативность, в отличие от принятого в математике соглашения о правой ассоциативности возведения в степень.
То есть некоторые языки программирования (например, программа Excel) могут воспринимать запись a^b^c
, как (a^b)^c
, тогда как другие системы и языки (например, Haskell, Perl, Wolfram|Alpha и многие другие) обработают эту запись справа налево: a^(b^c)
, как это принято в математике: .
Некоторые знаки возведения в степень в языках программирования и компьютерных системах:
x ↑ y
: Алгол, некоторые диалекты Бейсика;x ^ y
: Бейсик, J, MATLAB, R, Microsoft Excel, TeX, bc[К 2], Haskell[К 3], Lua, MathML и большинство систем компьютерной алгебры;x ^^ y
: Haskell[К 4], D;x ** y
: Ада, Bash, Кобол, Фортран, FoxPro, Gnuplot, OCaml, Perl, PL/I, PHP[К 5], Python, REXX, Ruby, SAS, Seed7, Tcl, ABAP, Haskell[К 6], Turing[англ.], VHDL, ECMAScript[К 7][К 8], AutoHotkey[К 8], JavaScript;x⋆y
: APL.
Во многих языках программирования (например, в Java, Си и Паскале) отсутствует операция возведения в степень, и для этой цели используют стандартные функции.
Remove ads
Вариации и обобщения
Суммиров вкратце
Перспектива
Возведение в степень с натуральным показателем можно определить не только для чисел, но и для нечисловых объектов, для которых определено умножение — например, к матрицам, линейным операторам, множествам (относительно декартова произведения, см. декартова степень).
Обычно эта операция рассматривается в некотором мультипликативном моноиде (полугруппе с единицей) и определяется индуктивно[15] для любого :
- (где — единица моноида).
- , где
- Если то определён только для обратимых элементов
Особенную ценность представляет применение возведения в степень к группам и полям, где возникает прямой аналог отрицательных степеней.
Гипероператор возведения в степень — тетрация.
Remove ads
Примечания
Литература
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads