Лучшие вопросы
Таймлайн
Чат
Перспективы

Корень (математика)

функция, обратная возведению в степень Из Википедии, свободной энциклопедии

Корень (математика)
Remove ads

Корень -й степени из числа определяется[1][2] как такое число , что Здесь  — натуральное число, называемое показателем корня (или степенью корня); как правило, оно больше или равно 2, потому что случай не представляет интереса.

Это статья об извлечении корней. См. также Корень уравнения и Корень многочлена.
Thumb

Обозначение: символ (знак корня) в правой части называется радикалом. Число (подкоренное выражение) чаще всего вещественное или комплексное, но существуют и обобщения для других математических объектов, например, вычетов, матриц и операторов, см. ниже #Вариации и обобщения.

Примеры для вещественных чисел:

  • Корнями 2-й степени из числа 9 являются и у обоих этих чисел квадраты совпадают и равны 9
  • потому что
  • потому что

Как видно из первого примера, у вещественного корня чётной степени могут быть два значения (положительное и отрицательное)[1], и это затрудняет работу с такими корнями, не позволяя использовать их в арифметических вычислениях. Чтобы обеспечить однозначность, вводится понятие арифметического корня (из неотрицательного вещественного числа), значение которого всегда неотрицательно, в первом примере это число Кроме того, принято соглашение, по которому знак корня чётной степени (радикал ) из вещественного числа всегда обозначает арифметический корень[3][4]: Если требуется учесть двузначность корня, перед радикалом ставится знак плюс-минус[3]; например, так делается в формуле решения квадратного уравнения :

Вещественные корни чётной степени из отрицательных чисел не существуют. Для комплексного числа всегда существует корень любой степени, но результат определён неоднозначно — комплексный корень -й степени из ненулевого числа имеет различных значений (см. #Корни из комплексных чисел).

Операция вычисления корня и алгоритмы её реализации появились в глубокой древности в связи с практическими потребностями геометрии и астрономии, см. #История.

Remove ads

Определение и связанные понятия

Суммиров вкратце
Перспектива

Кроме приведённого выше, можно дать два равносильных определения корня[5]:

  • Корень -й степени из числа есть решение уравнения (отметим, что решений может быть несколько или ни одного).
  • Корень -й степени из числа есть корень многочлена то есть значение , при котором указанный многочлен равен нулю.
Thumb
График значений квадратного корня: каждому значению , кроме нуля, соответствуют два значения корня различающиеся знаком

Операция вычисления называется «извлечением корня -й степени» из числа . Это одна из двух операций, обратных по отношению к возведению в степень[6], а именно — нахождение основания степени по известному показателю и результату возведения в степень . Вторая обратная операция, логарифмирование, находит показатель степени по известным основанию и результату.

Корни второй и третьей степени употребляются особенно часто и поэтому имеют специальные названия[6].

  • Квадратный корень: В этом случае показатель степени 2 обычно опускается, а термин «корень» без указания степени чаще всего подразумевает квадратный корень. Геометрически можно истолковать как длину стороны квадрата, площадь которого равна .
  • Кубический корень: Геометрически  — это длина ребра куба, объём которого равен .
Remove ads

Корни из вещественных чисел

Суммиров вкратце
Перспектива

В данном разделе всюду — натуральное число, — вещественные числа. Корень -й степени из вещественного числа , в зависимости от чётности и знака , может иметь от 0 до 2 вещественных значений.

Общие свойства

  • Корень нечётной степени из положительного числа — положительное число, однозначно определённое.
,   где       — нечётное
Например,
  • Корень нечётной степени из отрицательного числа — отрицательное число, однозначно определённое.
,   где       — нечётное
Например,
  • Корень чётной степени из положительного числа имеет два значения с противоположными знаками, но равными по модулю.
,   где       — чётное
Например,
  • Корень чётной степени из отрицательного числа не существует в области вещественных чисел, поскольку при возведении любого вещественного числа в степень с чётным показателем результатом будет неотрицательное число. Ниже будет показано, как извлекать такие корни в более широкой системе — множестве комплексных чисел (тогда значениями корня будут комплексных чисел).
   не существует в области вещественных чисел, если       — чётное
  • Корень любой натуральной степени из нуля — ноль.

Предостережение

Как сказано выше: «Корень чётной степени из отрицательного числа не существует в области вещественных чисел». При этом в области комплексных чисел такой корень существует. Поэтому следует всегда учитывать, в какой числовой системе (вещественных или комплексных чисел) мы извлекаем корень.

  1. Пример. В области вещественных чисел, квадратный корень из не существует.
  2. Пример. В области комплексных чисел, квадратный корень из равен

Арифметический корень

Thumb
График функции арифметического квадратного корня

Выше уже говорилось, что корни чётной степени определены, вообще говоря, неоднозначно, и этот факт создаёт неудобства при их использовании. Поэтому было введено практически важное ограничение этого понятия[7].

Арифметический корень -й степени из неотрицательного вещественного числа  — это неотрицательное число , для которого Обозначается арифметический корень знаком радикала.

Таким образом, арифметический корень, в отличие от корня общего вида (алгебраического), определяется только для неотрицательных вещественных чисел, а его значение всегда существует, однозначно[8] и неотрицательно. Например, квадратный корень из числа имеет два значения: и , из них арифметическим является первое.

Алгебраические свойства

Приведённые ниже формулы верны, прежде всего, для арифметических корней любой степени (кроме особо оговоренных случаев). Они справедливы также для корней нечётной степени, у которых допускаются и отрицательные подкоренные выражения[9].

  • Взаимопогашение корня и степени:[10] 
    • для нечётного :    ,
    • для чётного :    
  • Если , то и

Корень из произведения равен произведению корней из сомножителей:

Аналогично для деления:

Следующее равенство есть определение возведения в дробную степень[11]:

Величина корня не изменится, если его показатель и степень подкоренного выражения разделить на одно и то же число (множитель показателя степени и показатель степени подкоренного выражения):

  • Пример:

Для корней нечётной степени укажем дополнительное свойство:

Извлечение корня и возведение в дробную степень

Операция возведения в степень первоначально была введена как сокращённая запись операции умножения натуральных чисел: . Следующим шагом было определение возведения в произвольную целую, в том числе отрицательную, степень:

Операция извлечения арифметического корня позволяет определить возведение положительного числа в любую рациональную (дробную) степень[11]:

   

При этом числитель дроби может иметь знак. Свойства расширенной операции в основном аналогичны возведению в целую степень.

Это определение означает, что извлечение корня и обратное к нему возведение в степень фактически объединяются в одну алгебраическую операцию. В частности:

Попытки возведения в рациональную степень отрицательных чисел могут привести к ошибкам, поскольку значение алгебраического корня неоднозначно, а область значений арифметического корня ограничена неотрицательными числами. Пример возможной ошибки:

Функция корня

Если рассматривать подкоренное выражение как переменную, мы получим функцию корня -й степени: . Функция корня относится к категории алгебраических функций. График любой функции корня проходит через начало координат и точку .

Как сказано выше, для корня чётной степени, чтобы обеспечить однозначность функции, корень должен быть арифметическим, так что аргумент неотрицателен. Функция корня нечётной степени однозначна и существует для любого вещественного значения аргумента.

Подробнее , ...

Для любой степени функция корня строго возрастает, непрерывна всюду внутри своей области определения. Неограниченно дифференцируема всюду, кроме начала координат, где производная обращается в бесконечность[12] [13]. Производная определяется по формуле[14]:

   . В частности,   .

Функция неограниченно интегрируема во всей области определения. Неопределенный интеграл ищется по формуле:

   . В частности,      , где    — произвольная постоянная.

Предельные соотношения

Приведём несколько полезных пределов, содержащих корни[17].

Практическое вычисление корней

Функция вычисления квадратных и кубических корней предусмотрена во многих калькуляторах; например, калькулятор Windows показывает соответствующие кнопки в режиме «Инженерный» (Научный). Если на электронном калькуляторе есть клавиша возведения в степень: то для извлечения корня из текущего числа надо нажать следующие клавиши[18].

Набрать показатель корня
Нажать клавишу
Нажать клавишу

Для расчёта вручную можно использовать быстро сходящийся метод, изложенный в статье «Алгоритм нахождения корня n-ной степени». Для степеней выше третьей можно использовать логарифмическое тождество:

Для извлечения корня надо найти логарифм подкоренного выражения, разделить на степень корня и найти антилогарифм результата.

Remove ads

Корни из комплексных чисел

Суммиров вкратце
Перспектива

Зарождение понятия комплексного числа исторически было связано с желанием «легализовать» квадратные корни из отрицательных чисел. Как постепенно выяснилось, комплексные числа обладают богатыми алгебраическими и аналитическими свойствами; в частности, извлечение корней из них всегда возможно, хотя и неоднозначно. Для корней в комплексной области знак радикала обычно либо не используется, либо обозначает не функцию корня, а множество всех корней; в последнем случае, во избежание ошибок, знак радикала не должен использоваться в арифметических операциях. Пример возможной ошибки:

(что, конечно, неверно)

Ошибка возникла из-за того, что неарифметический квадратный корень является многозначной функцией, и его нельзя использовать в арифметических действиях.

Способы нахождения

Запишем комплексное число в тригонометрической форме:

.

Тогда корни -й степени из определяются формулой Муавра (тригонометрическая форма)[19]:

Thumb
Корни третьей и шестой степени из единицы (вершины треугольника и шестиугольника соответственно)

или в показательной форме:

Корень степени из ненулевого комплексного числа имеет значений (это следствие основной теоремы алгебры), и все они различны. Значение корня, получаемое при , часто называется главным.

Поскольку для всех значений корня величина модуля одинакова (он определяется как арифметический корень из модуля изначального комплексного числа), а меняется лишь его аргумент, все значений корня располагаются на комплексной плоскости на окружности радиуса c центром в начале координат. Корни делят эту окружность на равных частей.

Примеры

Найдём . Поскольку по формуле получаем:

При получим первый корень , при получим второй корень

Другой пример: найдём . Представим подкоренное выражение в тригонометрической форме:

По формуле Муавра получаем:

В итоге имеем четыре значения корня[20]:

Можно записать сводный ответ в виде:

Комплексная функция корня и риманова поверхность

Рассмотрим комплексную функцию корня -й степени: Согласно сказанному выше, эта функция является многозначной (точнее, -значной) функцией, и это создаёт неудобства при её исследовании и применении. В комплексном анализе вместо рассмотрения многозначных функций на комплексной плоскости принято иное решение: рассматривать функцию как однозначную, но определённую не на плоскости, а на более сложном многообразии, которое называется римановой поверхностью[21].

Для комплексной функции корня -й степени её риманова поверхность (см. рисунки) состоит из ветвей (листов), связанных винтообразно, причём последний лист связан с первым. Эта поверхность непрерывна и односвязна. Один из листов содержит главные значения корня, получаемые как аналитическое продолжение вещественного корня с положительного луча вещественной оси.

Опишем для простоты комплексную функцию квадратного корня. Её риманова поверхность состоит из двух листов. Первый лист можно представить как комплексную плоскость, у которой вырезан положительный луч вещественной оси. Значения функции корня на этом листе имеют вдвое меньший аргумент, чем , и поэтому они заполняют верхнюю часть комплексной плоскости значений. На разрезе первый лист склеен со вторым, и функция непрерывно продолжается через разрез на второй лист, где её значения заполняют нижнюю часть комплексной плоскости значений. Оставшиеся свободными начало первого листа и конец второго тоже склеим, после чего полученная функция на римановой поверхности становится однозначной и всюду непрерывной[21].

Единственный нуль у функции (первого порядка) получается при . Особые точки: и (точки разветвления бесконечного порядка)[21]. Понятие точки разветвления означает, что замкнутый контур в окрестности нуля неизбежно содержит переход с листа на лист.

В силу односвязности риманова поверхность корня является универсальной накрывающей[22] для комплексной плоскости без точки .

Remove ads

Вариации и обобщения

Суммиров вкратце
Перспектива

Корень -й степени из есть решение уравнения , и его в принципе можно определить всюду, где такое уравнение имеет смысл. Чаще всего рассматривают такие обобщения в алгебраических кольцах. Лучше всего исследованы обобщённые квадратные корни.

Если кольцо есть область целостности, то квадратных корней из ненулевого элемента может быть либо два, либо ни одного. В самом деле, если имеются два корня то откуда: , то есть, в силу отсутствия делителей нуля, . В более общем случае, когда в кольце имеются делители нуля или оно некоммутативно, число корней может быть любым.

В теории чисел рассматривается конечное кольцо вычетов по модулю : если сравнение имеет решение, то целое число называется вычетом степени n (в противном случае — невычетом степени n). Решение , если оно существует, является полным аналогом корня n-й степени из целого числа . Чаще всего используются случаи[23]:

  • (квадратичные вычеты)
  • (кубические вычеты)
  • (биквадратичные вычеты)

Корни для кватернионов имеют много общего с комплексными, но есть и существенные особенности. Квадратный кватернионный корень обычно имеет 2 значения, но если подкоренное выражение — отрицательное вещественное число, то значений бесконечно много. Например, квадратные корни из образуют трёхмерную сферу, определяемую формулой[24]:

Для кольца квадратных матриц доказано, что если матрица положительно определена, то положительно определённый квадратный корень из матрицы существует и единственен[25]. Для матриц других типов корней может быть сколько угодно (в том числе ни одного).

Квадратные корни вводятся также для функций[26], операторов[27] и других математических объектов.

Remove ads

История

Суммиров вкратце
Перспектива

Развитие понятия

Thumb
Вавилонская табличка (около 1800—1600 г. до н. э.) с вычислением

Первые задачи, связанные с извлечением квадратного корня, обнаружены в трудах вавилонских математиков (о достижениях древнего Египта в этом отношении ничего не известно). Среди таких задач[28]:

Вавилонские математики (II тысячелетие до н. э.) разработали для извлечения квадратного корня особый численный метод. Начальное приближение для рассчитывалось исходя из ближайшего к корню (в меньшую сторону) натурального числа . Представив подкоренное выражение в виде: , получаем: , затем применялся итеративный процесс уточнения, соответствующий методу Ньютона[29]:

Итерации в этом методе очень быстро сходятся. Для , например, и мы получаем последовательность приближений:

В заключительном значении верны все цифры, кроме последней.

Аналогичные задачи и методы встречаются в древнекитайской «Математике в девяти книгах»[30]. Древние греки сделали важное открытие:  — иррациональное число. Детальное исследование, выполненное Теэтетом Афинским (IV век до н. э.), показало, что если корень из натурального числа не извлекается нацело, то его значение иррационально[31].

Греки сформулировали проблему удвоения куба, которая сводилась к построению кубического корня с помощью циркуля и линейки. Проблема оказалась неразрешимой. Численные алгоритмы извлечения кубического корня опубликовали Герон (в трактате «Метрика», I век н. э.) и индийский математик Ариабхата I (V век)[32].

Алгоритмы извлечения корней любой степени из целого числа, разработанные индийскими и исламскими математиками, были усовершенствованы в средневековой Европе. Николай Орем (XIV век) впервые истолковал[33] корень -й степени как возведение в степень .

После появления формулы Кардано (XVI век) началось применение в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел[34]. Основы техники работы с комплексными числами разработал в XVI веке Рафаэль Бомбелли, который также предложил оригинальный метод вычисления корней (с помощью цепных дробей). Открытие формулы Муавра (1707) показало, что извлечение корня любой степени из комплексного числа всегда возможно и не приводит к новому типу чисел[35].

Комплексные корни произвольной степени в начале XIX века глубоко исследовал Гаусс, хотя первые результаты принадлежат Эйлеру[36]. Чрезвычайно важным открытием (Галуа) стало доказательство того факта, что не все алгебраические числа (корни многочленов) могут быть получены из натуральных с помощью четырёх действий арифметики и извлечения корня[37].

Этимология термина и происхождение символики

Термин корень имеет долгую и сложную историю. Извлечение квадратного корня древние греки понимали строго геометрически: как нахождение стороны квадрата по известной его площади. После перевода на санскрит греческое слово «сторона» превратилась в «мула» (основание). Слово «мула» имело также значение «корень», поэтому при переводе индийских сиддхант на арабский использовался термин «джизр» (корень растения). Впоследствии аналогичное по смыслу слово «radix» закрепилось в латинских переводах с арабского, а через них и в русской математической терминологии («корень», «радикал»)[38].

Средневековые математики (например, Кардано) обозначали квадратный корень[39] символом Rx, сокращение от слова «radix». Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов (то есть алгебраистов), в 1525 году[40]. Происходит этот символ от стилизованной первой буквы того же слова «radix». Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня.

Показатель степени появился в знаке корня благодаря Валлису и «Универсальной арифметике» Ньютона (XVIII век)[41].

Remove ads

См. также

Литература

  • Выгодский М. Я. Справочник по элементарной математике. — изд. 25-е. М.: Наука, 1978. ISBN 5-17-009554-6.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. М.: Наука, 1976. — 591 с.
  • История математики, в трёх томах / Под редакцией А. П. Юшкевича. М.: Наука, 1970—1972.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. М.: Наука, 1970. — 720 с.
  • Мордкович А. Г. Алгебра и начала анализа. Учебник для 10—11 классов, часть 1. — изд. 4-е. М.: Мнемозина, 2003. — 376 с.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. М.: Наука, 1967. — 304 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. М.: Наука, 1966. — 680 с.
Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads