Лучшие вопросы
Таймлайн
Чат
Перспективы
Сопряжённое априорное распределение
Из Википедии, свободной энциклопедии
Remove ads
Сопряжённое априорное распределение (англ. conjugate prior) и сопряжённое семейство распределений — одни из основных понятий в байесовской статистике.
Рассмотрим задачу о нахождении распределения параметра (рассматриваемого как случайная величина) по имеющемуся наблюдению . По теореме Байеса, апостериорное распределение вычисляется из априорного распределения с плотностью вероятности и функции правдоподобия по формуле:
Если апостериорное распределение принадлежит тому же семейству вероятностных распределений, что и априорное распределение (т.е. имеет тот же вид, но с другими параметрами), то это семейство распределений называется сопряжённым семейству функций правдоподобия . При этом распределение называется сопряжённым априорным распределением к семейству функций правдоподобия .
Знание сопряжённых семейств распределений существенно упрощает вычисление апостериорных вероятностей в байесовской статистике, так как позволяет заменить вычисление громоздких интегралов в формуле Байеса простыми алгебраическими манипуляциями над параметрами распределений.
Remove ads
Пример
Суммиров вкратце
Перспектива
Для случайной величины, распределённой по закону Бернулли (бросание монетки) с неизвестным параметром (вероятность успеха), в качестве сопряжённого априорного распределения обычно выступает бета-распределение с плотностью вероятности:
где и выбираются так, чтобы отразить имеющуюся априорную информацию или убеждение о распределении параметра q (выбор = 1 and = 1 даст равномерное распределение), а Β(, ) — бета-функция, служащая здесь для нормализации вероятности.
Параметры и часто называют гиперпараметрами (параметрами априорного распределения), чтобы отличить их от параметров функции правдоподобия (в данном случае, q).
Если взять выборку из n значений этой случайной величины, и среди них окажется s успехов и f неудач, то апостериорное распределение параметра q будет равно:
Это апостериорное распределение также оказывается распределённым по закону бета-распределения.
Remove ads
Таблица сопряжённых семейств распределений
В таблицах ниже показано каким образом изменяются параметры апостериорного распределения после выборки из n независимых, одинаково-распределённых наблюдений . Второй столбец — параметр функции правдоподобия, относительно которого строится семейство сопряжённых распределений.
Дискретно-распределённые функции правдоподобия
Непрерывно-распределённые функции правдоподобия
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads