热门问题
时间线
聊天
视角
被子植物
植物的一门,能开花的种子植物类群(演化支或分支) 来自维基百科,自由的百科全书
Remove ads
被子植物(英語:angiosperms)[5],又稱開花植物(英語:flowering plants)、真花植物或有花植物,是有胚植物中的一類種子植物,其最显著的特征是胚珠在发育过程中被心皮包被,并在受精后形成由子房发育而来的果实。
被子植物是植物界中物种多样性最高的类群,迄今已描述的物种数约为 30 万种[6],占已知维管植物物种总数的绝大多数,约为 90% 以上[7],也是人类研究最为深入的一类植物。
在较早的生物分类体系中,被子植物通常被设立为一个门级分类单元。而在常不提倡使用固定分类阶元的现代系统分类学框架下(如APG系统、PhyloCode),被子植物如今常被视为一个明确的演化支,即“被子植物演化支”。
被子植物和裸子植物共同构成现生種子植物,并與已滅絕的种子蕨类同屬於广义的種子植物;被子植物可以由一系列的衍徵與其他的種子植物相区分开来,包括封闭的心皮、双受精等。
須注意,生物學文献中尚存在“顯花植物”與“生花植物”等历史性术语。其中,“顯花植物”為早期对種子植物的统稱,与隐花植物这一包括了地衣、苔藓、藻类、真菌的过时分类概念相对;“生花植物”則為已普遍弃用的並系群分類概念。这些名称在现代分类学中一般已不再使用,其含义均不同于今日所指的被子植物。
Remove ads
独有特徵

被子植物在生殖结构和发育机制上的创新促成了其形态、生态及系统发育层面的高度多样性,使其成为现今陆地生态系统中物种最为丰富、分布最为广泛的一类植物,并在人类社会中具有极高的经济与文化重要性。
被子植物最显著且独有的特征是花。花在结构、形态与细节上表现出高度多样性,是被子植物系统分类和谱系研究中最可靠的外部形态特征之一。花的基本功能是实现胚珠的受精,并在受精后进一步发育形成包含种子的果实。
花通常形成于枝条顶端或叶腋处。有些植物(如紫罗兰)可在普通叶片的叶腋单独产生花;但更常见的情况是花着生于与营养枝明显区分的生殖枝上,并组成一定排列方式的分枝系统,称为花序。
并非所有的花都具备全部以上四轮器官。部分类群中,外围的两轮或其一可能退化(如柳属及毛茛科的成员),有时还会出现雄蕊等生殖器官演化呈花萼或花瓣状的情况(不育雄蕊,也称假雄蕊或瓣化雄蕊;如獐耳细辛),有些物种的花为单性,雄蕊和雌蕊分布在不同个体上(雌雄异株)。
Remove ads
花萼和花瓣是起到保护和吸引传粉者作用的相对外围结构,不具有生殖功能,可统称为花被;尤其对于木兰属、睡莲科等花萼和花瓣分化不明显,或是形态上呈现连续过渐趋势的情况,可对两者不作区分,统称为花被片。
大多数类群中,花萼呈绿色,形态近似叶片,主要功能是保护花蕾;花瓣则通常颜色鲜艳、结构精致,通过颜色、气味及花蜜等方式吸引昆虫、鸟类等传粉动物。这种对传粉者的适应性被认为是被子植物多样化和生态成功的重要因素之一。

花所产生的生殖细胞分为两类。花所产生的生殖细胞分为两类。雄性配子体来源于雄蕊中的小孢子,经发育形成花粉。雌性配子体则起源于胚珠内部,由大孢子发生过程(megasporogenesis)形成的大孢子进一步发育而成,最终形成包含卵细胞的胚囊。胚囊位于胚珠内部,并被珠心(nucellus;即大孢子发生后大孢子囊的的残余组织)所包围。
被子植物的雄配子体(即花粉)相比裸子植物显著缩小[8],这一特征被认为有助于缩短从授粉到受精完成的时间。在裸子植物中,授粉与受精之间的间隔可能长达数月甚至一年以上[8];而在被子植物中,受精过程通常可在授粉后较短时间内完成[9]。这种生殖周期的加快提高了被子植物产生种子的效率,可能有利于其在多变环境中的快速更新与扩散。
与雄配子体类似,被子植物的雌配子体亦高度简化,并与受精和胚胎发育过程的高效化相结合,使得被子植物能够在较短时间内完成从授粉到结实的全过程。这一特征为一年生草本植物等快速完成生命周期的生活史策略提供了基础,可能有助于被子植物占据短暂或扰动频繁的生态位[10]。
胚乳是被子植物独有的特征,通常由被子植物特有的双受精过程形成,富含营养物质,可为胚胎发育提供能量和物质支持[11],在某些类群中亦可在萌发初期为幼苗提供养分。胚乳的存在被认为是被子植物种子成功发育和幼苗早期建立的重要保障[12]。
在典型的双受精过程中,花粉落在柱头后萌发形成花粉管,经花柱进入子房,并通过珠孔进入胚珠。花粉管释放的两个精细胞中,一个与卵细胞结合形成二倍体的胚胎;另一个则与胚囊中央的两枚单倍体极核(polar nuclei)融合,形成三倍体细胞,该细胞随后经有丝分裂发育为胚乳。
若种子在未发生受精的情况下形成,则称为无融合生殖。

紧密包被胚珠的心皮不仅在生殖过程中提供了物理保护,也使其能够与多样化的传粉机制相配合。在胚胎和胚乳发育的同时,胚珠的外层结构逐渐发育形成种皮,而心皮的子房壁(ovary wall)则进一步发育形成果皮;发育成熟的种皮和果皮共同构成果实结构,而成熟的胚珠则为种子。
果实在保护种子的同时,其形态与结构也与种子的传播方式密切相关,如动物取食传播、风力或水力传播等,从而增强了被子植物在陆地生态系统中的扩散能力。在不开裂果实中,果皮通常承担主要的保护和传播功能,种皮相对发育较弱;而在裂果中,果实成熟后开裂释放种子(如凤仙花)。
Remove ads
與裸子植物相比,被子植物的維管束系統亦表現出多項關鍵創新。其維管組織由木質部與韌皮部構成,在具次生生長的真双子叶植物中,二者通常沿莖的徑向排列,形成以形成層為界的內外分布結構,木質部向內累積,韌皮部向外形成。若形成層活動具有明顯的季節性差異,則木質部會形成橫向可見的年輪結構[13];通常在一年中形成一個年輪,但此現象僅出現在部分溫帶或季節性氣候條件下的木本植物中,並非所有被子植物的普遍特徵。
單子葉植物莖部的维管束通常散布於基本組織中,而非真双子叶植物那样排列成環。大多數單子葉植物缺乏連續的形成層,因此通常不進行典型的次生生長。一旦莖部初生結構形成,其直徑增長便十分有限,僅在少數類群(如部分棕榈科)中可觀察到类似分生组织带形式的增粗生長[14]。
導管是被子植物的木質部演化出的一个重要創新性状。導管由多個細胞縱向連接而成,部分观点认为其在导水效率及安全性等方面优于裸子植物以管胞為主的木質部結構[15],但也有研究认为两者在性能上可能并无优劣之分[16][17]。雖然部分早期分化的被子植物仍只具管胞(无油樟[18]及部分睡莲目的茎[19])或以管胞为主,但導管的出現被普遍視為被子植物自白垩紀以來能够成功輻射演化的重要解剖學基礎[20]。
在葉部,被子植物的葉脈通常分為兩大類型:平行脈(多見於單子葉植物)與網狀脈(多見於真雙子葉植物)。網狀脈結構在受損時具有更高的冗餘性,有助於維持葉片的輸導功能,而平行脈則可能與狹長葉形及快速生長的生活型相適應。
Remove ads
演化
被子植物是现代陆地生态系统中最为多样、分布最广的一类植物,其起源与早期演化长期以来一直是植物演化生物学中的核心问题之一。与依赖孢子或裸露种子繁殖的Rhyniophyte、石松类、真蕨类、裸子植物等起源时间更早的其它陆生植物类群不同,被子植物在生殖结构方面具有标志性的创新,即具有花且胚珠由心皮包被。这些生殖结构的出现深刻改变了植物的繁殖方式,并重塑了植物与传粉者之间的协同演化关系,因此被认为是花演化过程中最关键的结构特征。
尽管陆生植物早在约 4 亿年前便已出现,具有明确花部结构的被子植物却直到约 1.3 亿年前的白垩纪早期才在化石记录中清晰出现。在地质时间尺度上,形态接近现代的花几乎在短时间内大量涌现,这种“突发式”出现与被子植物随后迅速的多样化形成了鲜明对比,也由此引出了达尔文著名的“惱人之謎(abominable mystery)”。
Remove ads

关于被子植物的最早起源时间,长期以来学界提出了多种假说,主要包括白垩纪起源说、侏罗纪起源说,以及更早的三叠纪甚至古生代起源的推测。这些假说之间的分歧核心并不在于被子植物是否在白垩纪发生快速辐射,而在于白垩纪之前是否已存在具有明确被子植物特征的祖源或近缘类群。这些学说的主要依据为化石记录,但由于化石在不同时期地层中的不连续性,被子植物究竟起源于何时、起源于哪一类裸子植物谱系,以及花部结构如何逐步演化等问题,至今仍未有定论。
迄今发现的可信度较高的被子植物花粉化石主要集中于白垩纪早期。在相当长的时间里,由于白垩纪以前的地层缺乏具有明确诊断特征的花或被子植物花粉化石,白垩纪起源说这一相对保守的结论逐渐成为国际学界的主流观点,即认为被子植物在早白垩纪首次出现,并在随后相对较短的地质时间内经历了快速的形态与谱系多样化[21]。
与此同时,也有研究指出,晚侏罗纪时期的生态环境、植被结构以及传粉系统已在一定程度上为被子植物的出现提供了条件,因此其起源时间可能略早于白垩纪。
进入 21 世纪以来,陆续有研究报道了一些被解释为侏罗纪甚至更早时期的被子植物或其近缘类群的化石,这类研究在中国大陆学者中尤为集中,例如南京花[22][23][24][25]、中华星学花[26]等化石,甚至提出二叠纪的太原穗(Taiyuananostachya ovulifera)可能具有被子植物特征[27];亦有观点认为三叠纪晚期存在类似被子植物的花粉化石[28][29][30]。然而,这些观点多基于对少数化石材料的解读,其可靠性和可重复性尚存争议。相关讨论的分歧主要集中在胚珠是否被完全包被、相关结构是否具备同源性,以及是否能够排除其属于非被子植物类群的可能性等关键问题上。
相较之下,分布于中国辽宁西部与德国巴伐利亚地区的施氏果属化石是国际上认可度相对较高的一类材料。该类群具有一系列与被子植物相似的特征,通常被视为与被子植物关系密切的已灭绝裸子植物类群,可能代表接近被子植物起源的旁支,但非被子植物的冠群成员或直接祖先。
除形态化石外,化学标志物亦被用于探讨被子植物的早期起源。例如,齐墩果烷是一种在现代被子植物中较为常见的化合物,其在部分中生代甚至更早时期沉积物中的发现,引发了关于早期被子植物或其近缘类群是否已存在的讨论。然而,解读化学标志物证据时需保持谨慎,因为其来源可能并非严格限定于被子植物,亦可能代表具有部分相似生化特征的已灭绝植物类群。因此,化学证据通常被视为补充线索,而非判定被子植物起源时间的直接依据。


多类已灭绝的前裸子植物曾被提出可能为被子植物的潜在祖源。其中,种子蕨类长期以来被认为可能与被子植物存在一定的亲缘关系,但由於種子蕨依據現有化石證據的整体植株重建本身就极不完整,且关键生殖结构证据不足,導致其與被子植物之間的联系目前仍停留在推测层面,无法支撑有意义的演化结论[31]。
三叠纪早期的化石植物 Sanmiguelia 亦曾被推测可能与被子植物有关[32][33],但由于对其形态特征的解读存在较大不确定性,其系统位置仍未明确。
此外,本內蘇鐵目和 五柱木目 等中生代裸子植物类群因在生殖结构上表现出一定的复杂性,也被认为可能是被子植物的直接祖先或潜在近缘类群。然而,这些类群的生殖结构特征是否与被子植物同源,仍缺乏决定性证据。
大羽羊齿类植物亦曾在被子植物起源的相关讨论中被提及[34]。该类群主要分布于晚古生代,其部分成员在叶片形态上表现出类似被子植物的网状叶脉结构[35],并在相关沉积物中检测到如齐墩果烷等化学标志物[36],这些特征一度引发了其与被子植物潜在亲缘关系的讨论。然而,由于目前尚未发现能够明确表明其具有花或胚珠包被等关键被子植物特征的化石证据,大羽羊齿类通常不被认为是被子植物的直接祖先,而更可能代表一类在形态或生化特征上与被子植物发生趋同演化的已灭绝种子植物类群。
近年来,茨康目的系统位置也受到关注。该类群曾被认为与银杏类关系密切[37],部分觀點認為其具有類似被子植物的特征[38]。
在系统发育关系上,曾有形态学研究认为買麻藤目与被子植物关系密切[39]。但根据近期分子系统学证据,目前普遍认为买麻藤目与其他裸子植物类群形成一支,而非被子植物的直接近缘类群。2018年一项对买麻藤的高质量基因组比较分析显示,买麻藤类植物和被子植物之间的相似性更可能源于独立的趋同演化,而非来自于与被子植物的直接亲缘关系;买麻藤类在系统发育上或应被视为与其他裸子植物分化较深的独立分支[40]。
Remove ads


从生物发育遗传机制角度上看,花是由营养枝的顶端分生组织转变而来的特化生殖枝,其器官(萼片、花瓣、雄蕊、心皮等)的形成与身份决定与一系列调控基因网络密切相关。以ABC模型为代表的花器官身份基因模型表明:多类转录因子(多为MADS-box基因)通过组合表达来指定不同花器官的身份。在生物实验中,改变这些基因的表达可导致同源异位转变,出现“叶样器官转化为花器官”或“花器官相互替代”等现象。这些发现支持“花器官与叶等侧生器官在发育上具有同源性基础”的观点,并为理解花部结构如何在演化中产生与变化提供了机制层面的框架。
花的出现与多样化通常被认为与动物传粉的兴起和扩展密切相关[41][42]。花粉传播并不必然需要鲜艳的花色或复杂的花部形态,但在动物介导传粉的情境下,花部结构与信号(如气味、形态与花蜜等)能够提高传粉效率,进而促进植物与传粉者之间的相互作用并推动多样化。需要注意的是,现代所观察到的动植物协同演化关系(如榕属与无花果小蜂)起源时间大多远远晚于最早被子植物大致的出现时间,因此需谨慎使用这些现象来解释花的最初起源过程。
综合现有的化石与系统发育研究,被子植物的演化过程中有三个主要代表性的演化辐射节点[43]:一是封闭的心皮以及放射状对称的显著花部结构的出现,这一创新奠定了被子植物区别于其他种子植物的基本特征。第二表现为两侧对称花的多次独立演化;两侧对称(即仅有单根对称轴)的花型常与更高程度的传粉专一性相关。第三则是肉质果实以及富含营养的种子的出现与多样化,这些性状显著影响了种子的传播方式,并促进了被子植物在不同生态系统中的扩散。这些关键性状并非在同一时期集中出现,而是在被子植物演化历史中分阶段发生。
上述遗传与发育特性在演化过程中可能持续推动着被子植物的生殖系统向有利于异株交配的方向发展[44],从而增强了遗传多样性。在这一过程中,自然选择的主要压力集中作用于与繁殖直接相关的器官,即花、果实和种子。这也解释了为何在被子植物的分类学中,这些繁殖器官往往可以提供稳定且信息量丰富的鉴定特征[45]。
Remove ads

大部分现代分子系统发生学研究显示,生长于南太平洋新喀里多尼亚、现仅存单一物种的无油樟是现生被子植物中起源最早的一支,通常被视为与其余现生被子植物的姐妹群[46][47],其特殊的系统位置使许多观点认为其在比较形态学与遗传演化层面上具有重要研究意义[48]。但并不意味着其形态可被直接等同于“最早的花”或“最原始的被子植物形态”[49],在讨论相关性状的演化意义时需结合化石证据与系统发育背景谨慎解释;同理,“无油樟当今分布于岛屿”这一事实也无法作为“被子植物起源于岛屿或孤立岛链环境”等具体情景假设的直接证据。也有部分研究显示,無油樟与睡蓮目構成的一個演化支才是其余被子植物的姐妹群[49][50]。
在宏观演化尺度上,被子植物的主要适应辐射发生于白垩纪,早白垩纪(约1.3亿年前前后)出现了较为明确的花粉化石及多类早期被子植物化石记录,而到晚白垩纪,被子植物在许多陆地生态系统中已显著增加并在多类植被类型中占据重要地位;同时,晚白垩纪地层中也出现了壳斗科[51]、無患子科[52]、木兰科[53]等可归入若干现代被子植物科级类群的化石材料,表明许多谱系可能在此阶段开始了早期分化。
2000年一项对化石群的统计研究显示[54],白垩纪时期的种子与果实整体偏小,如马阶晚期(6600万年前)被子植物的最大果实体积还不足10立方毫米,但到了白垩纪晚期至古近纪早期(含始新世),与动物传播相关的性状以及果实/种子的大小均总体上升,平均果实大小达到了人类拳头大小;然而,在始新世晚期至渐新世期间,果实大小又出现下降趋势,并在其后长期维持在相对较低水平,这一下降趋势被认为可能与随当时气候变化、禾本科、菊科、唇形科等相对新兴的草本类群生境扩张有关,但具体驱动因素仍需结合不同地区与类群的化石与系统发育证据综合评估。
在被子植物中,双性花在物种数量层面上占多数[44],即同一朵花上同时具有雄性和雌性生殖器官(雌蕊和雄蕊);然而,单性花以及雌雄异株、雌雄同株的情况亦广泛存在。为避免自花授粉并维持遗传多样性,被子植物演化出了多种形态学和生理学机制。部分物种通过雄蕊与心皮在空间位置或成熟时间上的差异降低自交概率;另一些物种则具有自交不親和性等生化识别机制,以排斥自身花粉。
分類

「被子植物」(Angiospermae)這一术语最早由德裔医师兼植物学者保羅·赫爾曼於1690年提出,用以指代种子被果实包被的开花植物,并与当时所理解的“裸子植物”概念相对。然而,早期植物学对种子与胚珠结构的认识尚不清晰,所谓“裸子植物”并非指今日意义上“不具心皮构成的胚珠包被”的植物类群,而往往被误认为是具有“裸露种子”的某些开花植物类型。这一时期“被子植物”与其反义概念的使用,更多反映的是形态直观上的区分,而非严格的发育学或系统分类学意义。
“现代生物分类学之父”——卡尔·林奈在其分类体系中沿用了“Angiospermae”与“Gymnospermae”等术语,但其用法较为狭义,仅作为特定类群下的分类单位名称(如二强雄蕊纲 Didynamia),而非涵盖全部开花植物的高阶类群。在此阶段,由于裸子植物尚未被明确识别为独立于开花植物之外的自然类群,“被子植物”一词的含义仍然不稳定,甚至在某些语境下被用作对“除某些裸子状植物之外的其他双子叶植物”的统称。
“被子植物”一词获得其现代意义的关键转折点出现在1827年:苏格兰植物学者兼古植物学者罗伯特·布朗通过对苏铁和松柏目等植物的解剖观察,首次明确指出这些植物的胚珠在受精前即完全裸露,从而确立了“裸子植物”在发育学上的定义。自此,胚珠是否被心皮包被成为区分两大种子植物类群的根本标准,“被子植物”也由此逐渐稳定地指代胚珠包被于子房之内、并通过花和果实完成生殖的植物类群。
19世纪中叶,德国植物学家威廉·霍夫梅斯特通过对胚珠发育和世代交替过程的研究,系统性地阐明了开花植物的生殖发育机制,并进一步巩固了裸子植物与被子植物在发育学层面的根本差异。在此基础上,“被子植物”逐渐被普遍接受为涵盖所有非裸子植物的开花植物类群,并包括传统意义上的双子叶植物与单子叶植物。
在不同的分类体系中,被子植物作为一个整体类群的阶元等级并不完全一致。韦特施泰因系统与恩格勒系统使用 Angiospermae 一名,并将其设为亚门;Reveal 系统则采用 Magnoliophytina(木兰亚门),并在其下划分木兰纲、百合纲(单子叶植物)和薔薇纲(涵盖大多数真双子叶植物)。塔赫他间系统与克朗奎斯特系统使用采用门级分类单元 (Magnoliophyta 木兰门),而达尔格伦系统和索恩系统则采用纲级分类单元 (Magnoliopsida 木兰纲)。
在现代系统发生学框架下,最初于1998 年提出的APG系统及其后续修订版本(APG II、APG III、APG IV)不再为被子植物设定固定式的分类阶元,而将其视为一个演化支,即被子植物分支(angiosperms),强调其单系性而非阶元层级的高低。
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 被子植物的主要分支(APG III分类法)[55]和其它真叶植物的亲缘关系[56] |
被子植物的內部分類在近几十年中经历了重大修订。克朗奎斯特分類法于1968年由阿瑟·克朗奎斯特提出,并于1981年发表完整版本;该分类系统曾长期作为被子植物分类的重要框架,并在教学与应用领域中持续产生影响。然而,随着分子系统发生学证据的大量积累,该分类体系已被认为难以准确反映被子植物的真实系统发育关系,因而逐渐不再作为研究上的主流分类方案。
“被子植物的分类应在系统发生框架下进行分类”这一理念在20世纪末开始逐步形成。在此背景下,被子植物种系发生学组于1998年发表了一份具有里程碑意义的重分类方案,即被子植物APG分类法(常简称为APG)。该体系以分子系统发生学证据为基础,并分别于2003年、2009年及2016年发布了修订版本,即 APG II、APG III 与 APG IV,逐步成为国际上被广泛采用的被子植物分类框架。
在采用分子系统学方法之前的传统分类体系中,被子植物通常被划分为两个主要类群,即“双子叶植物”与“单子叶植物”。在克朗奎斯特分类法中,这两类群分别大致对应“木兰纲”(Magnoliopsida)和“百合纲”(Liliopsida);这一划分主要依据植物在幼苗阶段子叶数目的差异:双子叶植物通常具有两枚子叶,而单子叶植物通常具有一枚子叶。然而,这一特征并非在所有类群中都严格适用,且在系统发育意义上并不总是可靠,在此意义上具有局限性。
近几十年的分子系统发生学研究表明,单子叶植物构成一个明确的单系群(即系统分类学定义下的“自然类群”),即单子叶植物分支。相对而言,传统意义上的“双子叶植物”并不构成单系群,但其中的大多数成员能够组成一个自然类群,被称为真双子叶植物,其共同特征包括具三沟孔型花粉等。除真双子叶植物之外,传统双子叶植物中剩余的类群在系统发生学上分属多个分化时间较早的被子植物谱系(基部被子植物),并不形成单系群。
開花植物的物種數量估計約有二十五萬至四十萬種之多。在 APG (1998) 中,共有462科;而在 APG II (2003) 中,則共有457科,但其中有55種建議選擇,所以最小值會是402科。
下表為開花植物中含最多物種的科,依多至少排列如下[59][60]:
- 菊科:23,600種
- 蘭科:21,950種
- 豆科:19,400種
- 茜草科:13,150種
- 禾本科:10,035種
- 唇形科:7,173種
- 大戟科:5,735種
- 野牡丹科: 5,005種
- 桃金孃科: 4,625種
- 夾竹桃科: 4,555種
- 莎草科:4,350種
- 錦葵科:4,225種
- 天南星科:4,025種
- 杜鵑花科: 3,995種
- 苦苣苔科:3,870種
- 繖形科:3,780種
- 十字花科:3,710種
- 胡椒科:3,600種
- 爵床科:3,500種
- 薔薇科:2,830種
- 紫草科:2,740種
- 蕁麻科:2,625種
- 毛茛科:2,525種
- 樟科:2,500種
- 茄科:2,460種
- 桔梗科:2,380种
- 棕榈科:2,361种
- 番荔枝科:2,220种
- 石竹科:2,200种
- 列当科:2,060种
- 苋科:2,050种
- 鸢尾科:2,025种
- 番杏科:2,020种
- 芸香科:1,815种
- 叶下珠科:1,745种
- 玄参科:1,700种
- 龙胆科:1,650种
- 旋花科:1,600种
- 山龙眼科:1,600种
- 无患子科:1,580种
- 仙人掌科:1,500种
- 五加科:1,450种
上表中,蘭科、禾本科、莎草科、天南星科和鸢尾科為單子葉植物,胡椒科、樟科和番荔枝科为木兰类植物,其他的則為真雙子葉植物。
根据植物分类学家大卫·弗洛丁(David Frodin)在2004年所做的分析,一共有57个开花植物的属包括500个以上的种。种的数目都是估计的,因为其中许多属并没有最近的研究专著。例如,兰科的Pleurothallis属中种的数量的估计从1120种到2500种。在其它的维管植物中,也有拥有大量种的属,包括卷柏属(Selaginella),铁角蕨属(Asplenium)和桫椤属(Cyathea)。
經濟价值
人类農業幾乎完全依賴被子植物,不論是直接作為糧食、蔬菜和水果來源,還是間接通過家畜家畜的飼養。
在被子植物各類群中,禾本科在全球農業體係中佔據最核心的地位,為人類提供了主要的糧食作物和經濟作物,包括米、玉米、小麥、大麥、裸麥、燕麥、御穀、甘蔗、高粱等。豆科則是僅次於禾本科的重要農作物類群,在提供膳食蛋白質來源、食用油以及固氮改良土壤方面具有重要意義。
此外,多種被子植物科在農業生產中亦佔據重要地位。例如茄科(馬鈴薯、番茄、辣椒等)、葫蘆科(南瓜、甜瓜等)、十字花科(芥末、油菜籽、高麗菜等)及傘形科(芹菜、芫荽、胡蘿蔔、茴香等)。常見水果則來于若干被子植物科,其中重要的類群包括薔薇科(蘋果、梨、櫻桃、杏、李、枇杷等)和芸香科(柑橘類)。
除糧食與果蔬外,被子植物還廣泛應用於木材、紙漿、藥用、纺织纖維等多個實用領域。許多重要木材都來源於被子植物,如用於建築和家具製造的硬木;天然纖維作物包括棉花、亞麻、麻等。此外,大量被子植物也因花、葉或整體形態的美觀性而被栽培為觀賞植物,在園藝和景觀設計中具有重要價值。
在部分地區,單一植物物種對當地社會和經濟具有突出的重要性。例如,椰子在太平洋島嶼地區被廣泛用於食品、飲料、纺织纖維及建築材料。而在地中海地區,油橄欖長期以來在飲食、油脂生產及文化傳統中佔據核心地位。
注释
參考文獻
外部連結
参见
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
