List of uniform polyhedra by vertex figure

From Wikipedia, the free encyclopedia

There are many relations among the uniform polyhedra.[1][2][3] Some are obtained by truncating the vertices of the regular or quasi-regular polyhedron. Others share the same vertices and edges as other polyhedron. The grouping below exhibit some of these relations.

More information Class, Number and properties ...
Polyhedron
Class Number and properties
Platonic solids
(5, convex, regular)
Archimedean solids
(13, convex, uniform)
Kepler–Poinsot polyhedra
(4, regular, non-convex)
Uniform polyhedra
(75, uniform)
Prismatoid:
prisms, antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings (11 regular, in the plane)
Quasi-regular polyhedra
(8)
Johnson solids (92, convex, non-uniform)
Bipyramids (infinite)
Pyramids (infinite)
Stellations Stellations
Polyhedral compounds (5 regular)
Deltahedra (Deltahedra,
equilateral triangle faces)
Snub polyhedra
(12 uniform, not mirror image)
Zonohedron (Zonohedra,
faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron (infinite)
Catalan solid (13, Archimedean dual)
Close

The vertex figure of a polyhedron

Summarize
Perspective

The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are

  • 3 - equilateral triangle
  • 4 - square
  • 5 - regular pentagon
  • 6 - regular hexagon
  • 8 - regular octagon
  • 10 - regular decagon
  • 5/2 - pentagram
  • 8/3 - octagram
  • 10/3 - decagram

Some faces will appear with reverse orientation which is written here as

  • -3 - a triangle with reverse orientation (often written as 3/2)

Others pass through the origin which we write as

  • 6* - hexagon passing through the origin

The Wythoff symbol relates the polyhedron to spherical triangles. Wythoff symbols are written p|q r, p q|r, p q r| where the spherical triangle has angles π/p,π/q,π/r, the bar indicates the position of the vertices in relation to the triangle.

Thumb
Example vertex figures

Johnson (2000) classified uniform polyhedra according to the following:

  1. Regular (regular polygonal vertex figures): pq, Wythoff symbol q|p 2
  2. Quasi-regular (rectangular or ditrigonal vertex figures): p.q.p.q 2|p q, or p.q.p.q.p.q, Wythoff symbol 3|p q
  3. Versi-regular (orthodiagonal vertex figures), p.q*.-p.q*, Wythoff symbol q q|p
  4. Truncated regular (isosceles triangular vertex figures): p.p.q, Wythoff symbol q 2|p
  5. Versi-quasi-regular (dipteroidal vertex figures), p.q.p.r Wythoff symbol q r|p
  6. Quasi-quasi-regular (trapezoidal vertex figures): p*.q.p*.-r q.r|p or p.q*.-p.q* p q r|
  7. Truncated quasi-regular (scalene triangular vertex figures), p.q.r Wythoff symbol p q r|
  8. Snub quasi-regular (pentagonal, hexagonal, or octagonal vertex figures), Wythoff symbol p q r|
  9. Prisms (truncated hosohedra),
  10. Antiprisms and crossed antiprisms (snub dihedra)

The format of each figure follows the same basic pattern

  1. image of polyhedron
  2. name of polyhedron
  3. alternate names (in brackets)
  4. Wythoff symbol
  5. Numbering systems: W - number used by Wenninger in polyhedra models, U - uniform indexing, K - Kaleido indexing, C - numbering used in Coxeter et al. 'Uniform Polyhedra'.
  6. Number of vertices V, edges E, Faces F and number of faces by type.
  7. Euler characteristic χ = V - E + F

The vertex figures are on the left, followed by the Point groups in three dimensions#The seven remaining point groups, either tetrahedral Td, octahedral Oh or icosahedral Ih.

Truncated forms

Summarize
Perspective

Regular polyhedra and their truncated forms

Column A lists all the regular polyhedra, column B list their truncated forms. Regular polyhedra all have vertex figures pr: p.p.p etc. and Wythoff symbol p|q r. The truncated forms have vertex figure q.q.r (where q=2p and r) and Wythoff p q|r.

vertex figure group A: regular: p.p.p B: truncated regular: p.p.r

Thumb
3.3.3
Thumb
3.6.6

Td

Thumb
Tetrahedron
3|2 3
W1, U01, K06, C15
V 4,E 6,F 4=4{3}
χ=2

Thumb
Truncated tetrahedron
2 3|3
W6, U02, K07, C16
V 12,E 18,F 8=4{3}+4{6}
χ=2

Thumb
3.3.3.3

Thumb
4.6.6

Oh

Thumb
Octahedron
4|2 3, 34
W2, U05, K10, C17
V 6,E 12,F 8=8{3}
χ=2

Thumb
Truncated octahedron
2 4|3
W7, U08, K13, C20
V 24,E 36,F 14=6{4}+8{6}
χ=2

Thumb
4.4.4

Thumb
3.8.8

Oh

Thumb
Hexahedron
(Cube)
3|2 4
W3, U06, K11, C18
V 8,E 12,F 6=6{4}
χ=2

Thumb
Truncated hexahedron
2 3|4
W8, U09, K14, C21
V 24,E 36,F 14=8{3}+6{8}
χ=2

Thumb
3.3.3.3.3
Thumb
5.6.6

Ih

Thumb
Icosahedron
5|2 3
W4, U22, K27, C25
V 12,E 30,F 20=20{3}
χ=2

Thumb
Truncated icosahedron
2 5|3
W9, U25, K30, C27
E 60,V 90,F 32=12{5}+20{6}
χ=2

Thumb
5.5.5

Thumb
3.10.10

Ih

Thumb
Dodecahedron
3|2 5
W5, U23, K28, C26
V 20,E 30,F 12=12{5}
χ=2

Thumb
Truncated dodecahedron
2 3|5
W10, U26, K31, C29
V 60,E 90,F 32=20{3}+12{10}
χ=2

Thumb
5.5.5.5.5
Thumb
5/2.10.10

Ih

Thumb
Great dodecahedron
5/2|2 5
W21, U35, K40, C44
V 12,E 30,F 12=12{5}
χ=-6

Thumb
Truncated great dodecahedron
25/2|5
W75, U37, K42, C47
V 60,E 90,F 24=12{5/2}+12{10}
χ=-6

Thumb
3.3.3.3.3

Thumb
5/2.6.6.

Ih

Thumb
Great icosahedron
(16th stellation of icosahedron)
5/2|2 3
W41, U53, K58, C69
V 12,E 30,F 20=20{3}
χ=2

Thumb
Great truncated icosahedron
25/2|3
W95, U55, K60, C71
V 60,E 90,F 32=12{5/2}+20{6}
χ=2

Thumb
5/2.5/2.5/2.5/2.5/2

Ih

Thumb
Small stellated dodecahedron
5|25/2
W20, U34, K39, C43
V 12,E 30,F 12=12{5/2}
χ=-6

Thumb
5/2.5/2.5/2

Ih

Thumb
Great stellated dodecahedron
3|25/2
W22, U52, K57, C68
V 20,E 30,F 12=12{5/2}
χ=2

In addition there are three quasi-truncated forms. These also class as truncated-regular polyhedra.

vertex figures Group Oh Group Ih Group Ih

Thumb
3.8/3.8/3
Thumb
5.10/3.10/3
Thumb
3.10/3.10/3

Thumb
Stellated truncated hexahedron
(Quasitruncated hexahedron)
(stellatruncated cube)
2 3|4/3
W92, U19, K24, C66
V 24,E 36,F 14=8{3}+6{8/3}
χ=2

Thumb
Small stellated truncated dodecahedron
(Quasitruncated small stellated dodecahedron)
(Small stellatruncated dodecahedron)
2 5|5/3
W97, U58, K63
V 60,E 90,F 24=12{5}+12{10/3}
χ=-6

Thumb
Great stellated truncated dodecahedron
(Quasitruncated great stellated dodecahedron)
(Great stellatruncated dodecahedron)
2 3|5/3
W104, U66, K71, C83
V 60,E 90,F 32=20{3}+12{10/3}
χ=2

Truncated forms of quasi-regular polyhedra

Column A lists some quasi-regular polyhedra, column B lists normal truncated forms, column C shows quasi-truncated forms, column D shows a different method of truncation. These truncated forms all have a vertex figure p.q.r and a Wythoff symbol p q r|.

vertex figure group A: quasi-regular: p.q.p.q B: truncated quasi-regular: p.q.r C: truncated quasi-regular: p.q.r D: truncated quasi-regular: p.q.r
Thumb
3.4.3.4

Thumb
4.6.8
Thumb
4.6.8/3
Thumb
8.6.8/3

Oh

Thumb
Cuboctahedron
2|3 4
W11, U07, K12, C19
V 12,E 24,F 14=8{3}+6{4}
χ=2

Thumb
Truncated cuboctahedron
(Great rhombicuboctahedron)
2 3 4|
W15, U11, K16, C23
V 48,E 72,F 26=12{4}+8{6}+6{8}
χ=2

Thumb
Great truncated cuboctahedron
(Quasitruncated cuboctahedron)
2 34/3|
W93, U20, K25, C67
V 48,E 72,F 26=12{4}+8{6}+6{8/3}
χ=2

Thumb
Cubitruncated cuboctahedron
(Cuboctatruncated cuboctahedron)
3 44/3|
W79, U16, K21, C52
V 48,E 72,F 20=8{6}+6{8}+6{8/3}
χ=-4

Thumb
3.5.3.5

Thumb
4.6.10
Thumb
4.6.10/3
Thumb
10.6.10/3

Ih

Thumb
Icosidodecahedron
2|3 5
W12, U24, K29, C28
V 30,E 60,F 32=20{3}+12{5}
χ=2

Thumb
Truncated icosidodecahedron
(Great rhombicosidodecahedron)
2 3 5|
W16, U28, K33, C31
V 120,E 180,F 62=30{4}+20{6}+12{10}
χ=2

Thumb
Great truncated icosidodecahedron
(Great quasitruncated icosidodecahedron)
2 35/3|
W108, U68, K73, C87
V 120,E 180,F 62=30{4}+20{6}+12{10/3}
χ=2

Thumb
Icositruncated dodecadodecahedron
(Icosidodecatruncated icosidodecahedron)
3 55/3|
W84, U45, K50, C57
V 120,E 180,F 44=20{6}+12{10}+12{10/3}
χ=-16

Thumb
5/2.5.5/2.5
Thumb
4.10.10/3

Ih

Thumb
Dodecadodecahedron
2 5|5/2
W73, U36, K41, C45
V 30,E 60, F 24=12{5}+12{5/2}
χ=-6

Thumb
Truncated dodecadodecahedron
(Quasitruncated dodecahedron)
2 55/3|
W98, U59, K64, C75
V 120,E 180,F 54=30{4}+12{10}+12{10/3}
χ=-6

Thumb

3.5/2.3.5/2

Ih

Thumb
Great icosidodecahedron
2 3|5/2
W94, U54, K59, C70
V 30,E 60, F 32=20{3}+12{5/2}
χ=2

Polyhedra sharing edges and vertices

Summarize
Perspective

Regular

These are all mentioned elsewhere, but this table shows some relations. They are all regular apart from the tetrahemihexahedron which is versi-regular.

vertex figure V E group regular regular/versi-regular
Thumb
3.3.3.3

3.4*.-3.4*

6 12 Oh

Thumb
Octahedron
4|2 3
W2, U05, K10, C17
F 8=8{3}
χ=2

Thumb
Tetrahemihexahedron
3/23|2
W67, U04, K09, C36
F 7=4{3}+3{4}
χ=1

Thumb
3.3.3.3.3
Thumb
5.5.5.5.5

12 30 Ih

Thumb
Icosahedron
5|2 3
W4, U22, K27
F 20=20{3}
χ=2

Thumb
Great dodecahedron
5/2|2 5
W21, U35, K40, C44
F 12=12{5}
χ=-6

Thumb
5/2.5/2.5/2.5/2.5/2
Thumb
3.3.3.3.3

12 30 Ih

Thumb
Small stellated dodecahedron
5|25/2
W20, U34, K39, C43
F 12=12{5/2}
χ=-6

Thumb
Great icosahedron
(16th stellation of icosahedron)
5/2|2 3
W41, U53, K58, C69
F 20=20{3}
χ=2

Quasi-regular and versi-regular

Rectangular vertex figures, or crossed rectangles first column are quasi-regular second and third columns are hemihedra with faces passing through the origin, called versi-regular by some authors.

vertex figure V E group quasi-regular: p.q.p.q versi-regular: p.s*.-p.s* versi-regular: q.s*.-q.s*
Thumb

3.4.3.4
3.6*.-3.6*
4.6*.-4.6*

12 24 Oh

Thumb
Cuboctahedron
2|3 4
W11, U07, K12, C19
F 14=8{3}+6{4}
χ=2

Thumb
Octahemioctahedron
3/23|3
W68, U03, K08, C37
F 12=8{3}+4{6}
χ=0

Thumb
Cubohemioctahedron
4/34|3
W78, U15, K20, C51
F 10=6{4}+4{6}
χ=-2

Thumb

3.5.3.5
3.10*.-3.10*
5.10*.-5.10*

30 60 Ih

Thumb
Icosidodecahedron
2|3 5
W12, U24, K29, C28
F 32=20{3}+12{5}
χ=2

Thumb
Small icosihemidodecahedron
3/23|5
W89, U49, K54, C63
F 26=20{3}+6{10}
χ=-4

Thumb
Small dodecahemidodecahedron
5/45|5
W91, U51, K56, 65
F 18=12{5}+6{10}
χ=-12

Thumb

3.5/2.3.5/2
3.10*.-3.10*
5/2.10*.-5/2.10*

30 60 Ih

Thumb
Great icosidodecahedron
2|5/23
W94, U54, K59, C70
F 32=20{3}+12{5/2}
χ=2

Thumb
Great icosihemidodecahedron
3 3|5/3
W106, U71, K76, C85
F 26=20{3}+6{10/3}
χ=-4

Thumb
Great dodecahemidodecahedron
5/35/2|5/3
W107, U70, K75, C86
F 18=12{5/2}+6{10/3}
χ=-12

Thumb

5.5/2.5.5/2
5.6*.-5.6*
5/2.6*.-5/2.6*

30 60 Ih

Thumb
Dodecadodecahedron
2|5/25
W73, U36, K41, C45
F 24=12{5}+12{5/2}
χ=-6

Thumb
Great dodecahemicosahedron
5/45|3
W102, U65, K70, C81
F 22=12{5}+10{6}
χ=-8

Thumb
Small dodecahemicosahedron
5/35/2|3
W100, U62, K67, C78
F 22=12{5/2}+10{6}
χ=-8

Ditrigonal regular and versi-regular

Ditrigonal (that is di(2) -tri(3)-ogonal) vertex figures are the 3-fold analog of a rectangle. These are all quasi-regular as all edges are isomorphic. The compound of 5-cubes shares the same set of edges and vertices. The cross forms have a non-orientable vertex figure so the "-" notation has not been used and the "*" faces pass near rather than through the origin.

vertex figure V E group ditrigonal crossed-ditrigonal crossed-ditrigonal
Thumb

5/2.3.5/2.3.5/2.3
5/2.5*.5/2.5*.5/2.5*
3.5*.3.5*.3.5*

20 60 Ih

Thumb
Small ditrigonal icosidodecahedron
3|5/23
W70, U30, K35, C39
F 32=20{3}+12{5/2}
χ=-8

Thumb
Ditrigonal dodecadodecahedron
3|5/35
W80, U41, K46, C53
F 24=12{5}+12{5/2}
χ=-16

Thumb
Great ditrigonal icosidodecahedron
3/2|3 5
W87, U47, K52, C61
F 32=20{3}+12{5}
χ=-8

versi-quasi-regular and quasi-quasi-regular

Group III: trapezoid or crossed trapezoid vertex figures. The first column include the convex rhombic polyhedra, created by inserting two squares into the vertex figures of the Cuboctahedron and Icosidodecahedron.

vertex figure V E group trapezoid: p.q.r.q crossed-trapezoid: p.s*.-r.s* crossed-trapezoid: q.s*.-q.s*
Thumb

3.4.4.4
3.8*.-4.8*
4.8*.-4.8*

24 48 Oh

Thumb
Small rhombicuboctahedron
(rhombicuboctahedron)
3 4|2
W13, U10, K15, C22
F 26=8{3}+(6+12){4}
χ=2

Thumb
Small cubicuboctahedron
3/24|4
W69, U13, K18, C38
F 20=8{3}+6{4}+6{8}
χ=-4

Thumb
Small rhombihexahedron
2 3/2 4|
W86, U18, K23, C60
F 18=12{4}+6{8}
χ=-6

Thumb

3.8/3.4.8/3
3.4*.-4.4*
8/3.4*.-8/3.4*

24 48 Oh

Thumb
Great cubicuboctahedron
3 4|4/3
W77, U14, K19, C50
F 20=8{3}+6{4}+6{8/3}
χ=-4

Thumb
Nonconvex great rhombicuboctahedron
(Quasirhombicuboctahedron)
3/24|2
W85, U17, K22, C59
F 26=8{3}+(6+12){4}
χ=2

Thumb
Great rhombihexahedron
2 4/33/2|
W103, U21, K26, C82
F 18=12{4}+6{8/3}
χ=-6

Thumb

3.4.5.4
3.10*.-5.10*
4.10*.-4.10*

60 120 Ih

Thumb
Small rhombicosidodecahedron
(rhombicosidodecahedron)
3 5|2
W14, U27, K32, C30
F 62=20{3}+30{4}+12{5}
χ=2

Thumb
Small dodecicosidodecahedron
3/25|5
W72, U33, K38, C42
F 44=20{3}+12{5}+12{10}
χ=-16

Thumb
Small rhombidodecahedron
25/25|
W74, U39, K44, C46
F 42=30{4}+12{10}
χ=-18

Thumb

5/2.4.5.4
5/2.6*.-5.6*
4.6*.-4.6*

60 120 Ih

Thumb
Rhombidodecadodecahedron
5/25|2
W76, U38, K43, C48
F 54=30{4}+12{5}+12{5/2}
χ=-6

Thumb
Icosidodecadodecahedron
5/35|3
W83, U44, K49, C56
F 44=12{5}+12{5/2}+20{6}
χ=-16

Thumb
Rhombicosahedron
2 35/2|
W96, U56, K61, C72
F 50=30{4}+20{6}
χ=-10

Thumb

3.10/3.5/2.10/3
3.4*.-5/2.4*
10/3.4*.-10/3.4*

60 120 Ih

Thumb
Great dodecicosidodecahedron
5/23|5/3
W99, U61, K66, C77
F 44=20{3}+12{5/2}+12{10/3 }
χ=-16

Thumb
Nonconvex great rhombicosidodecahedron
(Quasirhombicosidodecahedron)
5/33|2
W105, U67, K72, C84
F 62=20{3}+30{4}+12{5/2}
χ=2

Thumb
Great rhombidodecahedron
2 3/25/3|
W109, U73, K78, C89
F 42=30{4}+12{10/3}
χ=-18

Thumb

3.6.5/2.6
3.10*.-5/2.10*
6.10*.-6.10*

60 120 Ih

Thumb
Small icosicosidodecahedron
5/23|3
W71, U31, K36, C40
F 52=20{3}+12{5/2}+20{6}
χ=-8

Thumb
Small ditrigonal dodecicosidodecahedron
5/33|5
W82, U43, K48, C55
F 44=20{3}+12{5/2}+12{10}
χ=-16

Thumb
Small dodecicosahedron
3 3/2 5|
W90, U50, K55, C64
F 32=20{6}+12{10}
χ=-28

Thumb

3.10/3.5.10/3
3.6*.-5.6*
10/3.6*.-10/3.6*

60 120 Ih

Thumb
Great ditrigonal dodecicosidodecahedron
3 5|5/3
W81, U42, K47, C54
F 44=20{3}+12{5}+12{10/3}
χ=-16

Thumb
Great icosicosidodecahedron
3/25|3
W88, U48, K53, C62
F 52=20{3}+12{5}+20{6}
χ=-8

Thumb
Great dodecicosahedron
3 5/35/2|
W101, U63, K68, C79
F 32=20{6}+12{10/3}
χ=-28

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.