Loading AI tools
relacja między parami obiektów Z Wikipedii, wolnej encyklopedii
Relacja dwuargumentowa, dwuczłonowa[1] albo binarna – dowolny podzbiór iloczynu kartezjańskiego dwóch zbiorów[2].
Relacja dwuargumentowa jako podzbiór iloczynu kartezjańskiego i jest zbiorem par uporządkowanych postaci należących do zbioru czasami zamiast pisze się i mówi, że element jest w relacji z elementem bądź między elementami zachodzi relacja Istnieje pewna rozbieżność względem nazewnictwa dotyczącego zbiorów; tutaj dziedziną i przeciwdziedziną nazywane będą odpowiednio zbiory i z kolei zbiór
tzn. zbiór złożony ze wszystkich poprzedników par należących do relacji nazywany będzie dziedziną lewostronną (często nazywa się ją nieprecyzyjnie po prostu dziedziną), zaś zbiór
tzn. zbiór złożony ze wszystkich następników par należących do relacji nazywany będzie dziedziną prawostronną lub obrazem tej relacji (zob. Własności). Sumę dziedzin lewostronnej i prawostronnej (dziedziny i obrazu) nazywa się polem relacji. Zbiór wszystkich relacji dwuargumentowych między zbiorami ma moc
Funkcją nazywa się dowolną relację funkcyjną całkowitą (lewostronnie), jeśli to funkcję nazywa się zwykle działaniem jednoargumentowym; z kolei wzajemnie jednoznaczną odpowiedniość, nazywaną bijektywnością, nazywa się funkcją wzajemnie jednoznaczną lub bijekcją. W przypadku funkcji pojęcia dziedziny, przeciwdziedziny i obrazu pokrywają się z definicjami dla relacji; nazywanie wtedy dziedziną dziedziny lewostronnej nie prowadzi do niejasności, gdyż są one sobie równe.
Jeżeli tzn. to o relacji mówi się, że jest określona w/na zbiorze Zbiór par nazywa się wtedy przekątną. W tym przypadku możliwe jest określenie kolejnych własności tego rodzaju relacji:
Nazwa relacji | Zwrot. | Symetr. | Przech. | Symbol | Przykład |
---|---|---|---|---|---|
graf skierowany | |||||
graf nieskierowany | Nie | Tak | |||
turniej | Nie | Nie | porządek dziobania | ||
zależność | Tak | Tak | |||
słaby porządek | Tak | ||||
praporządek | Tak | Tak | preferencja | ||
częściowy porządek | Tak | Nie | Tak | zawieranie | |
częściowa równoważność | Tak | Tak | |||
równoważność | Tak | Tak | Tak | równość | |
ostry częściowy porządek | Nie | Nie | Tak | zawieranie właściwe |
Relacja jest:
Ustalone kombinacje powyższych własności mają swoje własne nazwy:
Wśród pozostałych własności można wymienić dobre ufundowanie i konfluentości: słabą i silną, seryjność oraz gęstość; relacjami, definiowanymi za pomocą wymienionych wyżej własności, są m.in. dobry porządek (dobre ufundowanie, ostry porządek liniowy) i relacja równoważności (seryjność, symetryczność, przechodniość).
Najprostszą relacją, którą można określić na dowolnych dziedzinach, jest relacja pusta równa zbiorowi pustemu Określona na jednym zbiorze jest symetryczna, antysymetryczna, przeciwsymetryczna, przeciwzwrotna i przechodnia, ale nie spójna ani zwrotna (chyba że jest określona na zbiorze pustym), jest ona bijekcją zbioru pustego, szczególnym przypadkiem tzw. funkcji pustej.
Na „drugim biegunie” można znaleźć relację pełną równą Określona na zbiorze jest tam zwrotna, symetryczna, spójna, przechodnia (relacja równoważności o jednej klasie abstrakcji), nie jest przeciwzwrotna, antysymetryczna, przeciwsymetryczna (o ile nie jest określona na zbiorze pustym).
W zbiorze liczb rzeczywistych obok struktury algebraicznej jaką jest ciało wprowadza się również relacje równoważności i porządku (zob. ciało uporządkowane), np. równość czy porządek liniowy („mniejsze-równe”) liczb rzeczywistych. Relacje na zbiorze liczb rzeczywistych można traktować jak figury na płaszczyźnie: relacją pustą jest wtedy figura pusta, relacją pełną jest cała płaszczyzna, a przekątną tworzy prosta będąca wykresem funkcji tożsamościowej (w modelu analitycznym płaszczyzny euklidesowej, czyli z wybranym układem współrzędnych); relacjami równoważności na płaszczyźnie są np. przystawanie, czy podobieństwo.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.