Loading AI tools
typ relacji dwuczłonowej używany w matematyce i innych naukach Z Wikipedii, wolnej encyklopedii
Funkcja (łac. functio, -onis „odbywanie, wykonywanie, czynność”[uwaga 1]), odwzorowanie[1][2], przekształcenie[3], transformacja[4] – pojęcie matematyczne używane w co najmniej dwóch zbliżonych znaczeniach:
Funkcje oznacza się na ogół literami itd. Jeśli funkcja przyporządkowuje elementom zbioru elementy zbioru to pisze się: W kontekście każdej funkcji używa się kilku podstawowych pojęć:
Funkcje to szczególne przypadki relacji binarnych. Relacja jest funkcją, jeśli spełnia dwa warunki, poniżej zapisane za pomocą kwantyfikatorów[2]:
Przez to funkcje rozumiane szeroko są też znane jako relacje jednoznaczne[9]. Teoria mnogości definiuje relacje za pomocą iloczynu kartezjańskiego zbiorów, czyli zbioru par uporządkowanych:
Termin funkcja pojawił się w matematyce w XVII wieku, po czym kolejni uczeni nadawali mu nowe znaczenia[6]. Leonhard Euler w osiemnastym wieku był pierwszym matematykiem, który użył wpółczesnego oznaczenia funkcji[10]. Euler używał dwóch definicji funkcji, pierwsze jako analityczne wyrażenie (formuła), zawierajaca stałe oraz zmienne. Druga definicja to zmienna zależna od innej zmiennej. Takie samo podejście można znaleźć w książkach Lagrange’a. Drugie podejście, z drobnymi zmianami, było używane przez późniejszych matematyków, takich jak Cauchy, Fourier, Drichlet, czy Riemann[11].
Funkcje stały się jednym z podstawowych i najważniejszych pojęć całej nowożytnej matematyki[6] i innych nauk ścisłych; funkcje:
Opisano dziesiątki odmian funkcji; niezależnie od dziedziny i przeciwdziedziny można wyróżnić funkcje różnowartościowe (iniekcje), funkcje „na” (suriekcje) oraz przecięcie tych dwóch zbiorów – funkcje wzajemnie jednoznaczne (bijekcje). Inne typy definiuje się m.in. za pomocą konkretnej dziedziny lub przeciwdziedziny, co opisano w dalszych sekcjach. Zbiór wszystkich funkcji ze zbioru do zbioru oznacza się [2].
Funkcja to trójka uporządkowana składająca się z poniższych elementów[13][14][15][16][17][18][19]:
Wyjaśnienie: Wykres to zbiór tylko takich par, że dla każdego elementu z istnieje dokładnie jeden z taki że para znajduje się w zbiorze (czyli owa para jest „punktem” z wykresu funkcji).
Definicja nazywana jest również definicją Bourbakiego[20][14] (wprowadzoną w 1954 r.[21]) ze względu na prostotę, pełność i ogólność spełnia wymogi współczesnej matematyki[22]. Zauważmy że dla teoriomnogościowej definicji trójki jako pewnego zbioru (co zwykle się przyjmuje), funkcja staje się zbiorem. W literaturze definicja może różnić się kolejnością elementów np. albo . Spotyka się również wariant tej definicji w której używa się klas zamiast zbiorów[15].
Jeżeli zakładamy że funkcja jest surjekcją lub jeśli jest wygodne nie ustalanie przeciwdziedziny, wówczas można skorzystać z definicji redukującej funkcję tylko do wykresu funkcji tj. (a więc do pewnego zbioru par). Tak zredukowana definicja jest bardziej pierwotna i została sformalizowana wcześniej (w latach ok. 1914–1921). Często w literaturze zaznacza się (z przyczyn głównie historycznych), że taka zredukowana definicja (wykres) jest pewną relacją binarną. Należy zauważyć że między ogólną definicją a zredukowaną istnieją poważne różnice[23]. Powyższa zredukowana definicja oraz pełna definicja Bourbakiego, są powszechnie używane w literaturze[22].
Istnieją również definicje starsze, bardziej pierwtone i mniej precyzyjne, jednak współcześnie zykle nie używa się ich.
W tradycyjnej notacji zwykle rozdziela się definicję wykresu od dziedziny i przeciwdziedziny np.
tu najpierw podano dziedzinę (liczby naturane) i przeciwdziedzinę (liczby rzeczywiste), a następnie osobno zdefiniowano wykres (zbiór w formalnej definicji) poprzez formułę pozwalającą wyznaczyć każdy jego element - czyli każdą parę , gdzie , oraz (symbol oznacza przynależność do zbioru).
Dokładniej: poprzez podstawienie danego elementu dziedziny pod formułę otrzymamy element przeciwdziedziny , co pozwoli skonstruować parę bądącą elementem (punktem) wykresu funkcji, np. dla podstawiamy - otrzymaliśmy więc parę , jeśli podobnie ucznimy dla pozostalych elementów dziedziny to znajdziemy wszystkie punktu (elementy) wykresu.
Bardziej formalny zapis (którego zwykle się nie stosuje w praktyce) dla tego przykładu wyglądałby tak:
Jeżeli pomija się podanie dziedziny i przeciwdziedziny dla danej funkcji to oznacza, że należy wywieść te informacje z wykresu lub kontekstu – co często ma miejsce (i uzasadnia oddzielenie definicji wykresu w tradycyjnej notacji).
Funkcje używające tej samej formuły do zdefiniowania wykresu nie muszą być tożsame. Rozważmy taki przypadek czterech funkcji korzystających z formuły (poniżej oznaczono: to liczby rzeczywiste a to liczby rzeczywiste większe od zera):
mamy: (bo każda jest inną trójką). Każda z funkcji ma inny charakter: to suriekcja, to bijekcja, k to iniekcja.
Rozważmy funkcję której dziedzina to (iloczyn kartezjański) czyli każdy element z dziedziny jest parą dwóch liczb rzeczywistych tj. . Przeciwdziedziną zaś niech będzie zaś wykresem . Zwróćmy uwagę że tak zdefiniowana funkcja przyjmuje defacto dwie liczby (stanowiące jedną parę oznaczoną przez ) jako argument a zwraca w wyniku jedną liczbę (będącą sumą kwadratów elementów pary). Kożystając z tradycyjnej notacji zapiszemy
zwróćmy uwagę, że zamiast zapisano a więc pominięto wewnętrzne nawiasy - jest to powszechnie stosowany skrót notacyjny. Formalnie funkcja przyjmuje tylko jeden argument (który jest parą liczb). Bardziej formalna definicja (nie stosowana w praktyce) wyglądała by tak:
Funkcje których argument jest parą, trójką lub w ogólności n-tką nazywamy funkcjami wielu zmiennych.
Argumentem funkcji może być n-tka zawierająca wiele elementów (np. przyjmuje trójkę liczb). Operacje arytmetyczne na liczbach są tego typu funkcjami np. dodawanie liczb naturalnych (z indywidualną notacją). Wynikiem funkcji również może być n-tka zawierająca wiele wartości (np. przyjmuje parę a zwraca trójkę liczb). Funkcje które mogą przyjmować inne funkcje jako argument i zwracać liczbę jako wynik nazywane są funkcjonałami (np. funkcjonał zwracający pole pod wykresem funkcji). Funkcje które jako argument przyjmują pewne funkcje i zwracają inne funkcje nazywamy operatorami - operatory transformują/zmieniają daną funkcję (lub kilka funkcji) na inną i często do ich zapisu stosujemy indywidualna odrębną notację (np. transformata Fouriera , operator składania funkcji , operator Nabla dla gradientu itp.)
Detaliczne omówienie wybranych przykładów w świetle formalnej definicji | ||||
---|---|---|---|---|
|