Лучшие вопросы
Таймлайн
Чат
Перспективы

Комплексный многогранник

Из Википедии, свободной энциклопедии

Remove ads

Комплексный многогранник — это обобщение многогранника в вещественном пространстве[англ.] на аналогичную структуру в комплексном гильбертовом пространстве, где к каждой вещественной размерности добавляется мнимая.

Комплексный многогранник можно понимать как коллекцию комплексных точек, прямых, плоскостей и так далее, где в каждой точке пересекаются несколько прямых, в каждой прямой несколько плоскостей и т. д.

Точное определение существует только для правильных комплексных многогранников, которые являются конфигурациями. Правильные комплексные многогранники полностью описаны и могут быть описаны с помощью символической нотации, разработанной Коксетером.

Описаны также некоторые комплексные многогранники, не являющиеся правильными.

Remove ads

Определение и вводные замечания

Суммиров вкратце
Перспектива

Комплексная прямая имеет одну размерность с вещественными координатами и другую с мнимыми координатами. Если использованы вещественные координаты для обоих размерностей, говорят о задании двух размерностей над вещественными числами. Вещественная плоскость с мнимой осью называется диаграммой Аргана. Ввиду этого она называется иногда комплексной плоскостью. Комплексное 2-пространство (которое иногда также называется комплексной плоскостью) тогда является четырёхмерным пространством над вещественными числами.

Комплексный n-многогранник в комплексном n-пространстве аналогичен вещественному n-многограннику в вещественном n-пространстве.

Нет естественного комплексного аналога порядку точки на вещественной оси (или связанных комбинаторных свойств). Вследствие этого комплексный многогранник нельзя рассматривать как непрерывную поверхность и он не ограничивает внутренность, как это происходит в вещественном случае.

В случае правильных многогранников точное определение можно дать с помощью понятия симметрии. Для любого правильного многогранника группа симметрии (здесь, группа комплексных отражений, называемая группой Шепарда) действует транзитивно на флагах, то есть на вложенные наборы точек, содержащихся в прямых, которые принадлежат плоскости и так далее.

Более полно, говорят, что набор P аффинных подпространств (или плоскостей) комплексного унитарного пространства V размерности n является правильным комплексным многогранником, если он удовлетворяет следующим условиям[1][2]:

  • для любых , если F является плоскостью в P размерности i и H является плоскостью в P размерности k, такие, что , то существует по меньшей мере две плоскости G в P размерности j такие, что ;
  • для любых i, j, таких что , если являются плоскостями пространства P размерностей i, j, то множество плоскостей между F и G связно, в том смысле, что можно получить из любого члена этого множества любой другой как последовательность вложений
  • подмножество унитарных преобразований V, не изменяющих P, транзитивно на флагах плоскостей P размерности i для всех i) (Здесь под плоскостью размерности −1 понимается пустое множество). Таким образом, по определению, правильные комплексные многогранники — это конфигурации в комплексном пространстве.

Правильные комплексные многогранники были открыты Шепардом[англ.] (1952) и их теория была позднее развита Коксетером (1974).

Три взгляда на правильные комплексные многоугольники , 4node_1343node
Thumb
Этот комплексный многоугольник имеет 8 рёбер (комплексные прямые) с метками a..h и 16 вершин. Четыре вершины лежат на каждом ребре и в каждой вершине пересекаются два ребра. На левом рисунке квадраты не являются элементами многогранника, но нарисованы исключительно помочь распознать вершины, лежащие на той же самой комплексной прямой. Восьмиугольный периметр левого изображения не является элементом многогранника, но он является многоугольником Петри[3]. На центральном рисунке каждое ребро представлено как вещественная прямая и четыре вершины на каждой прямой можно легко видеть.
Thumb
Эскиз в перспективе, представляющий 16 вершин в виде чёрных точек и 8 4-рёбер как квадраты внутри каждого ребра. Зелёный путь представляет восьмиугольный периметр левого изображения.

Комплексный многогранник существует в комплексном пространстве эквивалентной размерности. Например, вершины комплексного многоугольника — это точки на комплексной плоскости , а рёбра — комплексные прямые , существующие как (аффинные) подпространства плоскости, пересекающиеся в вершинах. Таким образом, ребро может быть задано одним комплексным числом.

В правильном комплексном многограннике вершины, инцидентные ребру, располагаются симметрично относительно барицентра, который часто используется как начало координатной системы ребра (в вещественном случае барицентром является просто середина ребра). Симметрия возникает из комплексных отражений относительно барицентра. Это отражение оставляет модуль любой вершины неизменным, но меняет её аргумент на постоянную величину, передвигая её в координаты следующей по порядку вершины. Таким образом, мы можем считать (после подходящего выбора шкалы), что вершины ребра удовлетворяют уравнению , где p — число инцидентных вершин. Таким образом, на диаграмме Аргана ребра, точки вершины лежат в вершинах правильного многоугольника с центром в начале координат.

Выше проиллюстрированы три вещественные проекции правильного комплексного многоугольника 4{4}2 с рёбрами a, b, c, d, e, f, g, h. Многоугольник имеет 16 вершин, которые для удобства обзора индивидуально не помечены. Каждое ребро имеет четыре вершины, а каждая вершина лежит на двух рёбрах, поскольку каждое ребро пересекает четыре других ребра. На первой диаграмме каждое ребро представлено квадратом. Стороны квадрата не являются частями многоугольника, но нарисованы исключительно для облегчения визуальных связей четырёх вершин. Рёбра располагаются симметрично. (Заметьте, что диаграмма выглядит подобно B4 плоской проекции Коксетера тессеракта, но структурно она другая).

На средней диаграмме не соблюдается восьмиугольная симметрия в пользу ясности. Каждое ребро показано как вещественная прямая, а каждая точка пересечения двух прямых является вершиной. Связь между различными рёбрами легко видеть.

Последняя диаграмма показывает структуру, спроецированную в трёхмерное пространство — два куба вершин, фактически, имеют один и тот же размер, но рассматриваются в перспективе с различного расстояния в четырёхмерном пространстве.

Remove ads

Правильные комплексные одномерные многогранники

Суммиров вкратце
Перспектива
Thumb
Комплексные 1-многогранники, представленные на комплексной плоскости как правильные многоугольники для p = 2, 3, 4, 5 и 6. Вершины показаны чёрными точками. Барицентр p вершин показан красным. Стороны многоугольников представляют применение генератора симметрии, отражающего каждую вершину в следующую против часовой стрелки. Эти многоугольные стороны не являются элементами многогранника, так как комплексный 1-многогранник может не иметь рёбер (он часто является комплексным ребром) и только содержит вершины.

Вещественный 1-мерный многогранник существует как замкнутый отрезок на вещественной прямой , определяемый двумя концами или вершинами. Его символом Шлефли — {} .

Аналогично, комплексный 1-многогранник существует как множество p из вершин на комплексной прямой . Они могут быть представлены как множество точек на диаграмме Аргана (x,y)=x+iy. Правильный комплексный 1-мерный многогранник p{} имеет p (p ≥ 2) вершин, расположенных в виде выпуклого правильного многоугольника {p} на комплексной плоскости[4].

В отличие от точек на вещественной прямой, точки на комплексной прямой не имеют естественного упорядочения. Тогда, в отличие от вещественных многогранников, нельзя определить никакой внутренности[5]. Вопреки этому, комплексные 1-многогранники часто рисуют, как здесь, в виде ограниченных правильных многоугольник на комплексной плоскости.

Thumb
Реальные рёбра генерируются как отрезки между точками и их отражениями в зеркале. Комплексное отражение порядка 2 можно рассматривать как вращение на 180 градусов вокруг центра. Ребро неактивно, если генераторная точка находится на линии зеркала или в центре.

Правильный вещественный 1-мерный многогранник представляется пустым символом Шлефли {} или диаграммой Коксетера — Дынкина node_1. Точка или узел диаграммы Коксетера — Дынкина представляет генератор отражения, в то время как кружок вокруг узла означает, что точка генератора не находится на зеркале, так что её зеркальное отражение отличается от самой точки. Согласно расширенной нотации правильный комплексный 1-мерный многогранник в , содержащий p вершин, имеет диаграмму Коксетера — Дынкина pnode_1 для любого положительного целого p (большего или равного 2). Число p можно опустить, если оно равно 2. Этот многогранник может быть также представлен пустым символом Шлефли или . 1 — это заполнитель, представляющий несуществующее отражение или тождественный генератор с периодом 1. (0-многогранник, вещественный или комплексный — это точка и представляется как } {, или как .)

Симметрия обозначается диаграммой Коксетера pnode и может быть альтернативно описана в нотации Коксетера[англ.] как , или , или . Симметрия изоморфна циклической группе, порядка p[6]. Подгруппами являются любые полные делители , где .

Генератор унитарного оператора для pnode выглядит как вращение на 2π/p радиан по часовой стрелке, а pnode_1 ребро образуется последовательным применением одного комплексного отражения. Генератор комплексного отражения для 1-многогранника с p вершинами — это . Если p = 2, генератором будет , то же, что и центральная симметрия на вещественной плоскости.

В комплексных многогранниках большей размерности 1-многогранники образуют p-рёбра. 2-ребро подобно обычному вещественному ребру, поскольку содержит две вершины, но не обязательно существует на вещественной прямой.

Remove ads

Правильные комплексные многоугольники

Суммиров вкратце
Перспектива

Хотя 1-многогранники могут иметь неограниченную величину p, конечные правильные комплексные многоугольники, за исключением многоугольников двойных призм , ограничены 5-рёбрами (пятиугольные рёбра), а бесконечные правильные апейрогоны включают также 6-рёбра (шестиугольные рёбра).

Обозначения

Модифицированные Шепардом обозначения Шлефли

Thumb
12 неприводимых групп Шепарда со взаимосвязью их индексов подгрупп[7]. Подгруппы с индексом 2 связаны удалением вещественно отражения:
, индекс 2.
, индекс q.

Шепард[англ.] первоначально придумал модифицированную форму нотации Шлефли для правильных многогранников. Для многоугольника, ограниченного p1-рёбрами, с p2-множествами в качестве вершинных фигур и общей группой симметрии порядка g, мы обозначаем многоугольник как .

Число вершин V тогда равно , а число рёбер E равно .

Комплексный многоугольник, проиллюстрированный выше, имеет восемь квадратных рёбер () и шестнадцать вершин (). Отсюда мы можем заключить, что g = 32, что даёт модифицированный символ Шлефли 4(32)2.

Пересмотренная нотация Шлефли

Более современная нотация принадлежит Коксетеру[8] и основывается на теории групп. Символом группы симметрии будет .

Группа симметрии представлена двумя генераторами , где: . Если q чётно, . Если q нечётно, . Когда q нечётно, .

Для имеет место , .

Для имеет место , .

Диаграммы Коксетера — Дынкина

Коксетер также обобщил использование диаграмм Коксетера — Дынкина на комплексные многогранники. Например, комплексный многоугольник представляется диаграммой pnode_1qrnode, а эквивалентная группа симметрии представляется диаграммой без кружка pnodeqrnode. Узлы p и r представляют зеркала, дающие образы p и r на плоскости. Непомеченные узлы на диаграмме имеют 2 неявные метки. Например, вещественный правильный многоугольник имеет обозначение , или {q}, или node_1qnode.

Thumb
Подгруппы : p=2,3,4…
, индекс p
, индекс 2

Имеется ограничение: узлы, связанные нечётными порядками ветвления, должны иметь идентичные порядки узлов. Если это не так, группа создаст «звёздчатые» многогранники с накладывающимися элементами. Таким образом, 3node_14node и 3node_133node являются обычными многоугольниками, в то время как 4node_13node является звёздчатым.

Перечисление правильных многоугольников

Коксетер привёл список правильных комплексных многоугольников в . Правильный комплексный многоугольник, или pnode_1qrnode, имеет p-рёбер и q-угольные вершинные фигуры. является конечным многогранником, если .

Симметрия правильного многоугольника, записываемая как , называется группа Шепарда, по аналогии с группой Коксетера, позволяя как вещественные, так и комплексные отражения.

Для незвёздчатых групп порядок группы можно вычислить как [9].

Число Коксетера для равно , так что порядок группы может быть также вычислен как . Правильный комплексный многочлен можно нарисовать в ортогональной проекции с h-гональной симметрией.

Решения ранга 2 генерируют следующие комплексные многоугольники:

Подробнее , ...

Исключены решения с нечётными q и неравными p и r: , и .

Другие целые q с неравными p и r, создают звёздчатые группы с перекрывающимися фундаментальными областями: 3node3node, 4node3node, 5node3node, 5node33node, 3node5node, и 5node5node.

Двойственный многоугольник для многоугольника  — это . Многоугольник вида самодвойственен. Группы вида имеют половинную симметрию , так что правильный многоугольник pnode_132xq3node является тем же, что и квазиправильный pnode_13q3pnode_1. Также правильный многоугольник с теми же порядками узлов, pnode_13q3pnode, имеет альтернированное[англ.] построение node_h32xq3pnode, позволяющее смежным рёбрам иметь два различных цвета[10].

Порядок группы, g, используется для вычисления полного числа вершин и рёбер. Многогранник имеет g/r вершин и g/p рёбер. Если p=r, число вершин и рёбер равно. Это условие необходимо, если q нечётно.

Подробнее ...
Подробнее ...

Визуализация правильных комплексных многоугольников

Многоугольники вида p{2r}q можно визуализировать q цветных множеств p-рёбер. Каждое p-ребро выглядит как правильный многоугольник, но нет никаких граней.

2D-ортогональные проекции комплексных многоугольников

Многогранники вида называются обобщёнными ортоплексами. Они имеют те же вершины, что и 4D q-q дуопирамиды[англ.], в которых вершины соединены 2-рёбрами.

Комплексные многоугольники

Многоугольники вида называются обобщёнными гиперкубами (квадратами для многоугольников). Многоугольники имеют те же вершины, что и 4D p-p дуопризмы, вершины соединены p-рёбрами. Вершины нарисованы зелёными и p-рёбра нарисованы поочерёдно красными и синими. Проекция слегка искажена для нечётных размерностей, чтобы сдвинуть накладывающиеся вершины от центра.

3D-перспективные проекции комплексных многоугольников p{4}2
Другие комплексные многоугольники p{r}2
2D-ортогональные проекции комплексных многоугольников, p{r}p

Многоугольники вида имеют равное число вершин и рёбер. Они также самодвойственны.

Remove ads

Правильные комплексные многогранники

Суммиров вкратце
Перспектива

В общем случае, правильный комплексный многогранник представляется символом Коксетера или диаграммой Коксетера pnode_13z1x3qnode3z2x3rnode3z3x3snode…, имеющей симметрию … или pnode3z1x3qnode3z2x3rnode3z3x3snode….[18]

Существуют бесконечные семейства правильных комплексных многогранников, которые появляются во всех размерностях. Эти семейства обобщают гиперкубы и ортаэдры в вещественном пространстве. «Обобщённый гиперпрямоугольник» Шепарда обобщает гиперкуб. Он имеет символ и диаграмму pnode_14node3node3node3node3node3node. Его группа симметрии имеет диаграмму . В классификации Шепарда—Тодда это группа G(p, 1, n), обобщающая знаковые матрицы перестановок. Его двойственный правильный многогранник, «обобщённый кросс-многогранник», представляется символом и диаграммой node_13node3node3node33node4pnode[19].

1-мерный правильный комплексный многогранник в представляется как pnode_1, имеет p вершин и имеет вещественное представление в виде правильного многоугольника {p}. Коксетер также даёт ему символ или как 1-мерный обобщённый гиперкуб или кросс-многогранник. Его симметрия — или pnode, циклическая группа порядка p. В многогранниках более высокого порядка, или pnode_1 представляет элемент p-ребра. Так, 2-ребро, {} или node_1 представляет обычное ребро между двумя вершинами[20].

Thumb
Некоторые группы Шепарда ранга 3 с их порядками и связями по подгруппам отражений

Двойственный комплексный многогранник строится путём обмена k-го и (n-1-k)-го элементов n-многогранника. Например, двойственный комплексный многоугольник имеет вершины в середине каждого ребра, а новые рёбра имеют центры в старых вершинах. v-валентная вершина создаёт новое v-ребро, а e-ребро становится e-валентной вершиной[21]. Двойственный многогранник правильного комплексного многогранника имеет обратный символ (то есть записанный в обратном порядке). Правильные комплексные многогранники, имеющие симметричные символы, то есть , , и т. д., являются самодвойственными.

Перечисление правильных комплексных многогранников

Коксетер перечислил незвёздчатые правильные комплексные многогранники в пространстве , включая 5 правильных многогранников в [22].

Правильный комплексный многогранник или pnode_13n1x3qnode3n2x3rnode, имеет pnode_13n1x3qnode грани, pnode_1 рёбра и qnode_13n2x3rnode вершинные фигуры.

Комплексный правильный многогранник требует, чтобы как g1 = порядок(), так и g2 = порядок() были конечными.

Если g = порядок(), число вершин равно g/g2 и число граней равно . Число рёбер равно g/pr.

Подробнее , ...

Визуализация правильных комплексных многогранников

2D-ортогональные проекции комплексных многогранников, p{s}t{r}r
Обобщённые октаэдры

Обобщённые октаэдры имеют построение как правильные формы node_13node4pnode и как квазиправильные виды node_13split1branchlabelp. Все элементы являются симплексами.

Обобщённые кубы

Обобщённые кубы имеют построение как правильные формы pnode_14node3node и как призматические pnode_12cpnode_12cpnode_1, произведение трёх p-угольных 1-многогранников. Элементами являются обобщённые кубы меньшей размерности.

Перечисление правильных комплексных 4-многогранников

Коксетер перечислил незвёздчатые правильные комплексные 4-многогранники в , включая 6 выпуклых правильных 4-многогранников в [26].

Подробнее , ...

Визуализация правильных комплексных 4-многогранников

Обобщённые 4-ортоплексы

Обобщённые 4-ортоплексы имеют построение как правильные види node_13node3node4pnode и квазиправильные виды какnode_13node3split1branchlabelp. Все элементы являются симплексами.

Обобщённые 4-кубы

Обобщённые тессеракты имеют построение как правильные формы pnode_14node3node3node и как призматические виды pnode_12cpnode_12cpnode_12cpnode_1, произведение четырёх p-угольных 1-многогранников. Элементами являются обобщённые кубы меньшей размерности.

Перечисление правильных комплексных 5-многогранников

Правильные комплексные 5-многогранники в и более высоких размерностях существуют в виде трёх семейств, вещественные симплексы, обобщённые гиперкубы и ортоплексы.

Подробнее , ...

Визуализация правильных комплексных 5-многогранников

Обобщёные 5-ортоплексы

Обобщённые 5-ортоплексы имеют построение как правильные формы node_13node3node3node4pnode и как квазиправильные node_13node3node3split1branchlabelp. Все элементы являются симплексами.

Обобщённые пентеракты

Обобщённые пентеракты имеют построение как правильные формы pnode_14node3node3node3node и как призматические pnode_12cpnode_12cpnode_12cpnode_12cpnode_1, произведение пяти p-угольных 1-многогранников. Элементами являются обобщённые кубы меньшей размерности.

Перечисление правильных комплексных 6-многогранников

Подробнее , ...

Визуализация правильных комплексных 6-многогранников

Обобщённые 6-ортоплексы

Обобщённые 6-ортоплексы имеют построение как правильные формы node_13node3node3node3node4pnode и как квазиправильные формы node_13node3node3node3split1branchlabelp. Все элемент являются симплексами.

Обобщённые 6-кубы (гексеракты)

Обобщённые 6-кубы имеют построение как правильные формы pnode_14node3node3node3node3node и призматические формы pnode_12cpnode_12cpnode_12cpnode_12cpnode_12cpnode_1, произведение шести p-угольных 1-угольников. Элементами являются обобщённые кубы меньших размерностей.

Перечисление правильных комплексных бесконечногранников

Thumb
Некоторые подгруппы бесконечноугольных групп Шеперда

Коксетер перечислил незвёздные правильные комплексные бесконечногранники и соты[27].

Для каждой размерности существует 12 бесконечногранников с символами существуют в любых размерностях , или if p=q=2. Коксетер называл их обобщёнными кубическими сотами для n>[28].

Каждый имеет пропорциональное число элементов, задаваемое формулами:

k-граней = , где и n! означает факториал числа n.

Правильные комплексные 1-многогранники

Thumb
11 комплексных многоугольников с покрашенными в голубой цвет внутренностями рёбер, рёбра вокруг одной вершины выкрашены в индивидуальные цвета. Вершины показаны как маленькие чёрные квадратики. Рёбра выглядят как p-сторонние правильные многоугольники, вершинные фигуры r-угольны.

Единственным правильным комплексным 1-многогранником является {}, или infinnode_1. Его вещественным представлением служит апейрогон {∞}, или node_1infinnode.

Правильные комплексные апейрогоны

Thumb
Квазиправильный бесконечноугольник pnode_1qrnode_1 является смешением двух правильных бесконечноугольников pnode_1qrnode и pnodeqrnode_1, которые показаны здесь синими и розовыми рёбрами. Бесконечноугольник 6node_136node_1 имеет только один цвет рёбер, поскольку q нечётно, что приводит к двойному покрытию.

Комплексные бесконечноугольники ранга 2 имеют симметрию p[q]r, где 1/p + 2/q + 1/r = 1. Коксетер выражает их как , где q ограничено выражением [29].

Существует 8 решений:

nodeinfinnode3node12node4node8node6node6node3node63node6node43node4node44node6node36node

Есть два исключённых решения с нечётным q и неравными p и r, это и , 10node5node или 12node34node.

Правильный комплексный бесконечноугольник имеет p-рёберные и q-гональные вершинные фигуры. Двойственный бесконечноугольник тела  — это . Бесконечноугольник вида самодвойственен. Группы вида имеют половину симметрии , так что бесконечноугольник pnode_12xqnode — это то же, что и квазирегулярный многогранник pnode_1qpnode_1[30].

Апейрогоны можно представить на комплексной плоскости четырьмя различными расположениями вершин. Апейрогоны вида имеют расположение вершин {q/2,p}, апейрогоны вида имеют расположение вершин r{p,q/2}, а апейрогоны вида имеют расположение вершин {p,r}.

Если включить аффинные узлы , добавляется ещё 3 бесконечных решения (infinnode_12infinnode_1, infinnode_14node и infinnode_133node). Первое решение является подгруппой с индексом 2 второго. Вершины этих бесконечноугольников существует в .

Подробнее , ...

Правильные комплексные бесконечногранники (трёхмерное пространство)

Существует 22 правильных комплексных бесконечногранника вида . 8 тел самодвойственны (p=r и a=b), а 14 существуют как двойственные пары многогранников. Три из них полностью вещественны (p=q=r=2).

Коксетер дал двенадцати из них символы (или ) и они являются правильными видами произведения бесконечногранников или , где q вычисляется из p и r.

Многогранники pnode_14node4qnode — это то же, что и pnode_13split1-44branchlabelq, так же, как и pnode_1qrnode2pnode_1qrnode для p,r=2,3,4,6. Также, pnode_14pnode4node = pnode4node_14pnode[32].

Подробнее , ...
Подробнее , ...
Подробнее , ...

Правильные комплексные 3-бесконечногранники

Существует 16 правильных комплексных бесконечногранников в . Коксетер дал двенадцати из них символы , где q ограничено выражением . Их можно разложить на произведение бесконечногранников: pnode_14node3node4rnode = pnode_1qrnode2pnode_1qrnode2pnode_1qrnode. В первом случае имеем кубические соты[англ.]* в .

Подробнее , ...
Подробнее , ...

Правильные комплексные 4-бесконечногранники

Существует 15 правильных комплексных бесконечногранников в . Коксетер дал двенадцати из них символы , где q ограничено выражением . Они могут быть разложены в произведение бесконечногранников: pnode_14node3node3node4rnode = pnode_1qrnode2pnode_1qrnode2pnode_1qrnode2pnode_1qrnode. В первом случае имеем в качестве вещественных решений тессерактовые соты[англ.]. 16-ячеечные соты[англ.] и 24-ячеечные соты[англ.] в . Последнее решение имеет в качестве элементов многогранники Виттинга[англ.].

Подробнее , ...

Правильные комплексные 5-бесконечногранники и выше

Существует только 12 правильных комплексных бесконечногранников в и выше[34], которые обозначаются символами , где q ограничено выражением . Их можно разложить на произведение n бесконечногранников: pnode_14node3node3node3node4rnode = pnode_1qrnode2pnode_1qrnodepnode_1qrnode2pnode_1qrnode. В первом случае имеем гиперкубические соты в .

Подробнее , ...

Многоугольники ван Осса

Thumb
Красный квадрат (многоугольник ван Осса) на плоскости ht, hf, содержащий центр правильного октаэдра.

Многоугольник ван Осса является правильным многоугольником на плоскости (вещественной плоскости или комплексной плоскости ), в которой лежат как рёбра, так и барицентр правильного многогранника, и который образован элементами многогранника. Не все правильные многогранники имеют многоугольники ван Осса.

Например, многоугольники ван Осса вещественного октаэдра — это три квадрата, плоскости которых проходят через центр октаэдра. Для контраста, куб не имеет многоугольников ван Осса, поскольку плоскость от ребра к центру рассекает по диагонали две квадратные грани, так что два ребра куба на полученной плоскости не образуют многоугольника.

Бесконечные соты также имеют многоугольники ван Осса. Например, вещественная квадратная мозаика и треугольная мозаика имеют апейрогоны {∞} в качестве многоугольников ван Осса[35].

Многоугольник ван Осса правильного комплексного многогранника вида …, если существует, имеет p-рёбер.

Remove ads

Неправильные комплексные многогранники

Суммиров вкратце
Перспектива

Произведение комплексных многогранников

Пример произведения комплексных многогранников
Thumb
Комплексное произведение многоугольников node_125node_1 или ,
имеет 10 вершин, связанных пятью 2-рёбрами и двумя 5-рёбрами, и имеет представление как 3-мерная пятиугольная призма.
Thumb
Двойственный многоугольник ,
имеет 7 вершин, находящихся в середине исходных рёбер, соединённых 10 рёбрами. Его вещественным представлением является пятиугольная бипирамида.

Некоторые комплексные многогранники можно представить как прямое произведение. Эти произведения многогранников не являются строго правильными, поскольку имеют более одного типа фасет, но некоторые могут представить более низкие симметрии правильных форм, если все ортогональные многогранники одинаковы. Например, произведение или pnode_12pnode_1 двух 1-мерных многогранников является тем же, что и правильный многогранник или pnode_14node. Более общие произведения, наподобие имеют вещественные представления как 4-мерные p-q дуопризмы. Двойственный многогранник произведения многогранников можно записать как сумму и он имеет вещественное представление как 4-мерная p-q дуопирамида[англ.]. Многогранник может иметь симметрию, удвоенную по сравнению с правильным комплексным многогранником или node_14pnode.

Аналогично, комплексный многогранник можно построить как тройное произведение: или pnode_12cpnode_12cpnode_1 — то же, что и правильный обобщённый куб, или pnode_14node3node, как и произведение или pnode_14node2pnode_1[36].

Квазиправильные многогранники

Квазиправильный многоугольник является усечением правильного многоугольника. Квазиправильный многоугольник pnode_1qrnode_1 содержит чередование рёбер правильных многоугольников pnode_1qrnode и pnodeqrnode_1. Квазиправильный многоугольник имеет p вершин на p-рёбрах правильных видов.

Подробнее p[q]r, 2[4]2 ...

Квазиправильные апейрогоны

Существует 7 квазиправильных комплексных бесконечноугольников, которые чередуют рёбра правильного бесконечноугольника и его двойственного. Расположения вершин[англ.] этого бесконечноугольника имеют представления с правильными и однородными мозаиками евклидовой плоскости. Последний столбец для 6{3}6 содержит бесконечноугольники, которые не только самодвойственны, но для них двойственный совпадает с собой с наложенными шестиугольными рёбрами, так что их квазирегулярные формы также имеют наложенные шестиугольные рёбра и он не может быть нарисован двумя чередующимися цветами, как в других столбцах. Симметрия самодвойственных семейств может быть удвоена, создавая тем самым идентичную геометрию, как в правильных формах: pnode_1qpnode_1 = pnode_12xqnode

Подробнее , ...

Квазиправильные многоугольники

Thumb
Пример усечения 3-обобщённого октаэдра, 2{3}2{4}3, node_13node43node, до его предельного полного усечения, показывающий контурные треугольные грани (зелёные) в начале и 2{4}3, node_143node, (голубые) вершинные фигуры, расширяющиеся до новых граней.

Как и в случае вещественных многогранников, комплексный квазиправильный многогранник может быть построен как полное усечение правильного многогранника. Вершины образуются в середине рёбер правильного многогранника, а грани правильного многогранника и их двойственные попеременно располагаются вдоль общих рёбер.

Например, p-обобщённый куб pnode_14node3node,
имеет p3 вершин, 3p2 рёбер и 3p p-обобщённых квадратных граней, в то время как p-обобщённый октаэдр pnode4node3node_1,
имеет 3p вершин, 3p2 рёбер и p3 треугольных граней. Средняя квазиправильная форма p-обобщённого кубоктаэдра pnode4node_13node,
имеет 3p2 вершины, 3p3 рёбер и 3p+p3 граней.

Также полное усечение многогранника Гессе[англ.] 3node_133node33node — это 3node33node_133node, квазиправильная форма, разделяющая геометрию правильного комплексного многогранника 3node_133node4node.

Подробнее Обобщённый куб/октаэдр, Многогранник Гессе[англ.] ...

Другие комплексные многогранники с комплексными отражениями периода два

Другие неправильные комплексные многогранники могут быть построены с помощью комплексных групп отражений, которые не дают линейных графов Коксетера. В диаграммах Коксетера с петлями Коксетер отмечает период, как в диаграмме node_13split1branch или символе и группе [37][38]. Эти комплексные многогранники не исследованы систематически за пределами нескольких частных случаев.

Группа nodepsplit1branch определяется 3 комплексными отражениями, , все порядка 2: . Период p можно рассматривать как двойное вращение в вещественном пространстве .

Как и в случае построений Витхоффа, для многогранников, генерируемых отражениями, число вершин многогранника, имеющего диаграмму Коксетера с одним кружком, равно порядку группы, разделённой на порядок подгруппы, в которой обведённый узел удалён. Например, вещественный куб имеет диаграмму Коксетера node_14node3node, с октаэдральной симметрией[англ.] node4node3node порядка 48 и подгруппу диэдральной симметрии node3node порядка 6, так что число вершин куба равно s 48/6=8. Фасеты строятся путём удаления одного узла, самого удалённого от узла с кружком, например node_14node для куба. Вершинные фигуры генерируются путём удаления обведённого узла и помещения кружка или кружков на соседние узлы, node_13node для куба.

Коксетер представляет эти группы следующими символами. Некоторые группу имеют одинаковый порядок, но различную структуру, определяя то же расположение вершин[англ.] в комплексных многогранниках, но различные рёбра и элементы более высокой размерности, как в диаграммах nodepsplit1branch и node3split1branchlabelp с p≠3[39]

Подробнее , № 33, 34, ...

Коксетер называет некоторые из этих комплексных многогранников почти правильными, поскольку они имеют правильные фасеты и вершинные фигуры. Первый является вариантом обобщённого кросс-многогранника с меньшей симметрией в . Второй является дробным обобщённым кубом, в котором p-рёбра сведены в отдельные вершины, оставляя простые 2-рёбра. Три из них связаны с конечным правильным косым многогранником в .

Подробнее , ...

Коксетер определил и другие группы с антиунитарным построением, например, эти три. Первая группа была открыта и нарисована Макмуллен, Питер[англ.] в 1966[41]

Подробнее , ...
Подробнее , ...
Подробнее , ...
Подробнее , ...

Визуализация

Remove ads

Примечания

Литература

Литература для дальнейшего чтения

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads