Loading AI tools
ilorazy liczb całkowitych – ułamki zwykłe z całkowitymi licznikami i mianownikami Z Wikipedii, wolnej encyklopedii
Liczby wymierne – liczby, które można zapisać w postaci ilorazu dwóch liczb całkowitych, w którym dzielnik jest różny od zera[1]. Są to więc liczby, które można przedstawić za pomocą ułamka zwykłego. Zbiór liczb wymiernych zazwyczaj oznacza się symbolem od niemieckiego słowa Quotient – iloraz lub stosunek[2]. Symbolicznie:
Definicja intuicyjna |
Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne. |
Liczby wymierne są przez to uogólnieniem liczb całkowitych umożliwiającym dzielenie przez dowolną liczbę różną od zera; na liczbach wymiernych można wykonywać wszystkie cztery podstawowe działania arytmetyczne. Jest też kilka innych podstawowych własności tego zbioru:
Podstawowym uogólnieniem liczb wymiernych są liczby rzeczywiste, których ułamki dziesiętne mogą być jednocześnie nieskończone i nieokresowe[3]. Więcej informacji o liczbach wymiernych dostarcza matematyka wyższa:
Liczby wymierne tworzą ciało ułamków pierścienia liczb całkowitych. Niech w zbiorze par liczb całkowitych których następnik jest różny od zera, dana będzie relacja równoważności
W zbiorze klas abstrakcji tej relacji określa się dwa działania
Parę zapisuje się zwykle w postaci ułamka bądź jeśli to parę tę utożsamia się po prostu z liczbą
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.