Loading AI tools
definicje różnych typów liczb Z Wikipedii, wolnej encyklopedii
Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.
Nie ma jednej uniwersalnej cechy odróżniającej wszystkie liczby od elementów algebr[a], które tak nie są nazywane. Matematycy nie definiują „liczb”, definiują „liczby naturalne”, „liczby całkowite”, „liczby rzeczywiste” itp.[b]
O ile jednak nazwanie danego obiektu liczbą jest podyktowane bardziej tradycją niż ogólną definicją, to poszczególne rodzaje liczb są już ściśle określane. Definicje liczb stanowią pewną sekwencję (bardziej złożone algebry opierają się na prostszych), którą prezentuje niniejszy artykuł.
Liczby mogą być definiowane na trzy sposoby:
Wśród mnogości pojęć mających w nazwie słowo „liczba” można wyróżnić:
Zbiory liczbowe tworzące algebrę są zawsze definiowane razem z podstawowymi działaniami na nich – dodawaniem i mnożeniem[c]. Dopiero określenie zbioru wraz z działaniami, czyli tzw. struktury algebraicznej, stanowi dostateczną definicję. Nie wystarcza tu skonstruowanie samego zbioru, gdyż określając odpowiednio działania, można sprawić, że np. zbiór liczb wymiernych będzie nieodróżnialny (izomorficzny) od zbioru liczb naturalnych[d].
Dowolny zbiór, w którym zdefiniowane działania spełniają aksjomaty właściwe dla danej algebry liczbowej, czyli tzw. model jej aksjomatyki, można nazwać zbiorem liczb. Posiada on bowiem wówczas wszystkie właściwości, jakich oczekujemy po danym zbiorze liczbowym. Model aksjomatyki liczb nazywamy konstrukcją liczb.
Ponieważ dany zestaw aksjomatów może mieć wiele różnych modeli, liczby można skonstruować na wiele sposobów. Metody te są równoważne w tym sensie, że wszelkie twierdzenia udowodnione na liczbach skonstruowanych według jednej metody dają się bez zmian przenosić na inne konstrukcje (zachodzi tzw. izomorfizm). W praktyce więc nie ma, poza domeną teorii mnogości i logiki, potrzeby ich odróżniania.
Na ogół zaczyna się konstrukcję od liczb naturalnych, następnie buduje się na ich podstawie liczby całkowite, na bazie których z kolei konstruuje się liczby wymierne, potem rzeczywiste i zespolone[e]. W każdym z tych zbiorów są podzbiory, które przy tej samej definicji działań spełniają aksjomaty liczb zdefiniowanych wcześniej.
Przykładowo liczby wymierne mogą być skonstruowane jako zbiory par liczb całkowitych z odpowiednio zdefiniowanym dodawaniem i mnożeniem. Wydawałoby się, że liczba całkowita zbiorem par liczb całkowitych być nie może, a więc liczby całkowite nie są szczególnym przypadkiem liczb wymiernych. Ponieważ jednak podzbiór liczb wymiernych odpowiadający ułamkom a/1 ze zwykłym dodawaniem i mnożeniem także spełnia aksjomaty liczb całkowitych, ostatecznie możemy więc stwierdzić, że liczby całkowite są jednak szczególnym przypadkiem wymiernych, a ich zbiór zawiera się w zbiorze liczb wymiernych. Podobnie jest przy konstruowaniu kolejnych zbiorów liczbowych.
Można też wykonać konstrukcję od drugiej strony i najpierw skonstruować jakąś dostatecznie szeroką strukturę, np. liczby zespolone, a następnie zdefiniować pozostałe zbiory jako jej podzbiory z tymi samymi działaniami dodawania i mnożenia.
Na początek załóżmy, że istnieje liczba 1 (cokolwiek by ten symbol miał oznaczać). Chcielibyśmy także dla każdej liczby móc pokazać jej tzw. następnik (oznaczymy go ). Musimy zatem zagwarantować istnienie następnika liczby 1 (który oznaczymy 2), a także następników kolejnych następników. Następnik liczby 2 oznaczymy 3 itd. Jeśli dodatkowo założymy, że 1 nie jest następnikiem żadnej liczby i odpowiednio zdefiniujemy dodawanie i mnożenie, to tak skonstruowany zbiór możemy nazwać zbiorem liczb naturalnych.
Proces konstrukcji kolejnych elementów zbioru wygląda następująco:
Ściślej rzecz biorąc, zbiór liczb naturalnych jest definiowany przez aksjomaty Peana[f].
Aksjomatyka Peana[g] | |
---|---|
1. | J jest liczbą naturalną. |
2. | Dla każdej liczby naturalnej istnieje dokładnie jedna liczba naturalna, zwana jej następnikiem. |
3. | J nie jest następnikiem żadnej liczby naturalnej. |
4. | Jeśli dwie liczby naturalne mają równe następniki, to są sobie równe. |
5. | Aksjomat indukcji:
Wówczas zbiór ten zawiera wszystkie liczby naturalne. |
Niektórzy matematycy zaliczają zero do liczb naturalnych, inni nie. Jest to wyłącznie kwestia nazewnictwa. Zarówno zbiór liczb naturalnych z zerem, jak i bez niego ma powyższe własności. W tym pierwszym przypadku J oznacza 0, w tym drugim 1.
Do pełnego określenia liczb naturalnych brakuje definicji działań i porządku. Definicje te zależą już od tego, czy liczby naturalne zaczniemy od zera, czy nie.
Dla liczb z zerem dodawanie, mnożenie i relację porządku wprowadzamy przez aksjomaty:
Pojęcie | Aksjomaty |
---|---|
Dodawanie | 6. 7. |
Mnożenie | 8. 9. |
Porządek liniowy | 10. istnieje takie naturalne że |
Podstawiając do równania 9 wartość: uzysku