Growth factor receptor-bound protein 2, also known as Grb2, is an adaptor protein involved in signal transduction/cell communication. In humans, the GRB2 protein is encoded by the GRB2 gene.[5][6]
Quick Facts Available structures, PDB ...
GRB2 |
---|
|
Available structures |
---|
PDB | Ortholog search: PDBe RCSB |
---|
List of PDB id codes |
---|
1AZE, 1BM2, 1BMB, 1CJ1, 1FHS, 1FYR, 1GCQ, 1GFC, 1GFD, 1GHU, 1GRI, 1IO6, 1JYQ, 1JYR, 1JYU, 1QG1, 1TZE, 1X0N, 1ZFP, 2AOA, 2AOB, 2H5K, 2HUW, 2VVK, 2VWF, 2W0Z, 3C7I, 3IMD, 3IMJ, 3IN7, 3IN8, 3KFJ, 3MXC, 3MXY, 3N7Y, 3N84, 3N8M, 3OV1, 3OVE, 3S8L, 3S8N, 3S8O, 2H46, 3WA4, 4P9V, 4P9Z, 5CDW |
|
|
Identifiers |
---|
Aliases | GRB2, ASH, EGFRBP-Grb3-3, MST084, MSTP084, NCKAP2, growth factor receptor bound protein 2 |
---|
External IDs | OMIM: 108355; MGI: 95805; HomoloGene: 1576; GeneCards: GRB2; OMA:GRB2 - orthologs |
---|
|
|
|
|
|
Wikidata |
|
Close
The protein encoded by this gene binds receptors such as the epidermal growth factor receptor and contains one SH2 domain and two SH3 domains. Its two SH3 domains direct complex formation with proline-rich regions of other proteins, and its SH2 domain binds tyrosine phosphorylated sequences. This gene is similar to the sem-5 gene of Caenorhabditis elegans, which is involved in the signal transduction pathway. Two alternatively spliced transcript variants encoding different isoforms have been found for this gene.[7]
Grb2 is widely expressed and is essential for multiple cellular functions. Inhibition of Grb2 function impairs developmental processes in various organisms and blocks transformation and proliferation of various cell types. It is thus not surprising that targeted gene disruption of Grb2 in mice is lethal at an early embryonic stage. Grb2 is best known for its ability to link the epidermal growth factor receptor tyrosine kinase to the activation of Ras and its downstream kinases, ERK1,2. Grb2 is composed of an SH2 domain flanked on each side by an SH3 domain. Grb2 has two closely related proteins with similar domain organizations, Gads and Grap. Gads and Grap are expressed specifically in hematopoietic cells and function in the coordination of tyrosine kinase mediated signal transduction.
The SH2 domain of Grb2 binds to phosphorylated tyrosine-containing peptides on receptors or scaffold proteins with a preference for pY-X-N-X, where X is generally a hydrophobic residue such as valine (see ).
The N-terminal SH3 domain binds to proline-rich peptides and can bind to the Ras-guanine exchange factor SOS.
The C-terminal SH3 domain binds to peptides conforming to a P-X-I/L/V/-D/N-R-X-X-K-P motif that allows it to specifically bind to proteins such as Gab-1.[8]
Grb2 has been shown to interact with:
- ADAM15,[9]
- Abl gene,[10][11]
- Arachidonate 5-lipoxygenase,[12][13]
- B-cell linker,[14][15][16][17]
- BCAR1,[18][19]
- BCR gene,[20][21][22][23][24][25]
- Beta-2 adrenergic receptor,[26]
- C-Met,[27][28]
- CBLB,[29][30][31]
- CD117,[32][33][34]
- CD22,[35][36]
- CD28,[37][38]
- CDKN1B,[39]
- CRK,[40][41][42]
- Cbl gene,[29][43][44][45][46][47][48][49][50][51][52][53][54]
- Colony stimulating factor 1 receptor,[55]
- DCTN1,[56]
- DNM1,[57][58]
- Dock180,[59][60]
- Dystroglycan,[61]
- EPH receptor A2,[62]
- ETV6,[20]
- Epidermal growth factor receptor,[6][63][64][65][66][67][68][69][70][71]
- Erythropoietin receptor,[32][72]
- FRS2,[44][73][74][75]
- Fas ligand,[76][77]
- GAB1,[63][78][79]
- GAB2,[20][80][81]
- Glycoprotein 130,[82]
- Granulocyte colony-stimulating factor receptor,[83]
- HER2/neu,[65][84][85]
- HNRNPC,[86]
- Huntingtin,[87]
- INPP5D,[88]
- IRS1,[89][90][91]
- ITK,[92][93]
- Janus kinase 1,[89][94]
- Janus kinase 2,[89][95]
- KHDRBS1,[46][63][96]
- Linker of activated T cells,[97][98][99]
- Lymphocyte cytosolic protein 2,[43][78][100][101][102]
- MAP2,[103][104]
- MAP3K1[105]
- MAP4K1,[106][107][108][109]
- MED28,[110]
- MST1R,[111][112]
- MUC1,[113]
- Mitogen-activated protein kinase 9,[114][115]
- NCKIPSD,[116][117]
- NEU3,[118]
- PDGFRB,[71][119][120]
- PIK3R1,[121][122]
- PLCG1,[123][124][125]
- PRKAR1A,[68]
- PTK2,[18][126][127][128][129]
- PTPN11,[83][120][130][131][132][133][134][135][136]
- PTPN12,[137]
- PTPN1,[138][139]
- PTPN6,[45][131][140]
- PTPRA,[141][142][143]
- RAPGEF1,[144][145]
- RET proto-oncogene,[146][147]
- SH2B1,[148][149]
- SH3KBP1,[150][151]
- SHC1,[21][45][47][64][90][130][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166]
- SOS1,[21][42][44][45][46][47][58][63][64][70][100][113][124][158][165][167][168][169][170][171][172]
- Src,[45][173]
- Syk,[45][131]
- TNK2,[152][174]
- TrkA,[175][176]
- VAV1,[82][167][177][178]
- VAV2,[64][84]
- VAV3,[64][179] and
- Wiskott-Aldrich syndrome protein.[180][181]
VanderNoot VA, Fitzpatrick FA (September 1995). "Competitive binding assay of src homology domain 3 interactions between 5-lipoxygenase and growth factor receptor binding protein 2". Analytical Biochemistry. 230 (1): 108–14. doi:10.1006/abio.1995.1444. PMID 8585605.
Liang Q, Mohan RR, Chen L, Wilson SE (July 1998). "Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways". Investigative Ophthalmology & Visual Science. 39 (8): 1329–38. PMID 9660480.
Elly C, Witte S, Zhang Z, Rosnet O, Lipkowitz S, Altman A, Liu YC (February 1999). "Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation". Oncogene. 18 (5): 1147–56. doi:10.1038/sj.onc.1202411. PMID 10022120. S2CID 25964785.
Erdreich-Epstein A, Liu M, Kant AM, Izadi KD, Nolta JA, Durden DL (April 1999). "Cbl functions downstream of Src kinases in Fc gamma RI signaling in primary human macrophages". Journal of Leukocyte Biology. 65 (4): 523–34. doi:10.1002/jlb.65.4.523. PMID 10204582. S2CID 18340540.
Robertson H, Langdon WY, Thien CB, Bowtell DD (November 1997). "A c-Cbl yeast two hybrid screen reveals interactions with 14-3-3 isoforms and cytoskeletal components". Biochemical and Biophysical Research Communications. 240 (1): 46–50. doi:10.1006/bbrc.1997.7608. PMID 9367879.
Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (May 1997). "CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2". Oncogene. 14 (19): 2331–8. doi:10.1038/sj.onc.1201074. PMID 9178909. S2CID 967748.
Odai H, Sasaki K, Iwamatsu A, Nakamoto T, Ueno H, Yamagata T, Mitani K, Yazaki Y, Hirai H (April 1997). "Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl". Blood. 89 (8): 2745–56. doi:10.1182/blood.V89.8.2745. PMID 9108392.
Mancini A, Niedenthal R, Joos H, Koch A, Trouliaris S, Niemann H, Tamura T (September 1997). "Identification of a second Grb2 binding site in the v-Fms tyrosine kinase". Oncogene. 15 (13): 1565–72. doi:10.1038/sj.onc.1201518. PMID 9380408. S2CID 7880476.
Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (March 2003). "Differential regulation of cell motility and invasion by FAK". The Journal of Cell Biology. 160 (5): 753–67. doi:10.1083/jcb.200212114. PMC 2173366. PMID 12615911.
Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (March 2003). "A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling". Nature Biotechnology. 21 (3): 315–8. doi:10.1038/nbt790. PMID 12577067. S2CID 26838266.
Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (February 1997). "The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor". Oncogene. 14 (8): 923–8. doi:10.1038/sj.onc.1200906. PMID 9050991. S2CID 10640461.
Ong SH, Goh KC, Lim YP, Low BC, Klint P, Claesson-Welsh L, Cao X, Tan YH, Guy GR (August 1996). "Suc1-associated neurotrophic factor target (SNT) protein is a major FGF-stimulated tyrosine phosphorylated 90-kDa protein which binds to the SH2 domain of GRB2". Biochemical and Biophysical Research Communications. 225 (3): 1021–6. doi:10.1006/bbrc.1996.1288. PMID 8780727.
Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, Borkhardt A, Kabelitz D, Janssen O (May 2002). "Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178)". FEBS Letters. 519 (1–3): 50–8. doi:10.1016/s0014-5793(02)02709-6. PMID 12023017. S2CID 26765451.
Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O (December 2001). "Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor". FEBS Letters. 509 (2): 255–62. doi:10.1016/s0014-5793(01)03174-x. PMID 11741599. S2CID 33084576.
Morrison KB, Tognon CE, Garnett MJ, Deal C, Sorensen PH (August 2002). "ETV6-NTRK3 transformation requires insulin-like growth factor 1 receptor signaling and is associated with constitutive IRS-1 tyrosine phosphorylation". Oncogene. 21 (37): 5684–95. doi:10.1038/sj.onc.1205669. PMID 12173038. S2CID 2899858.
Kim H, Lee YH, Won J, Yun Y (September 2001). "Through induction of juxtaposition and tyrosine kinase activity of Jak1, X-gene product of hepatitis B virus stimulates Ras and the transcriptional activation through AP-1, NF-kappaB, and SRE enhancers". Biochemical and Biophysical Research Communications. 286 (5): 886–94. doi:10.1006/bbrc.2001.5496. PMID 11527382.
Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF (August 1999). "Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src". Oncogene. 18 (33): 4647–53. doi:10.1038/sj.onc.1203079. PMID 10467411. S2CID 19801963.
Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S, O'Day K, Schieven GL, Lin TA, Kanner SB (August 2002). "Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav". Biochemistry. 41 (34): 10732–40. doi:10.1021/bi025554o. PMID 12186560.
Asada H, Ishii N, Sasaki Y, Endo K, Kasai H, Tanaka N, Takeshita T, Tsuchiya S, Konno T, Sugamura K (May 1999). "Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT". The Journal of Experimental Medicine. 189 (9): 1383–90. doi:10.1084/jem.189.9.1383. PMC 2193052. PMID 10224278.
Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (October 1998). "The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins". Oncogene. 17 (15): 1893–901. doi:10.1038/sj.onc.1202108. PMID 9788432. S2CID 19885101.
Pandey P, Kharbanda S, Kufe D (September 1995). "Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein". Cancer Research. 55 (18): 4000–3. PMID 7664271.
Saleem A, Datta R, Yuan ZM, Kharbanda S, Kufe D (December 1995). "Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents". Cell Growth & Differentiation. 6 (12): 1651–8. PMID 9019171.
Charest A, Wagner J, Kwan M, Tremblay ML (April 1997). "Coupling of the murine protein tyrosine phosphatase PEST to the epidermal growth factor (EGF) receptor through a Src homology 3 (SH3) domain-mediated association with Grb2". Oncogene. 14 (14): 1643–51. doi:10.1038/sj.onc.1201008. PMID 9135065. S2CID 438581.
Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T, Nagashima K (April 1994). "C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins". Proceedings of the National Academy of Sciences of the United States of America. 91 (8): 3443–7. Bibcode:1994PNAS...91.3443T. doi:10.1073/pnas.91.8.3443. PMC 43593. PMID 7512734.
Borrello MG, Pelicci G, Arighi E, De Filippis L, Greco A, Bongarzone I, Rizzetti M, Pelicci PG, Pierotti MA (June 1994). "The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins". Oncogene. 9 (6): 1661–8. PMID 8183561.
Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V, Matsuka G, Davies AM, Waterfield M, Buchman VL (August 2000). "Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein". The EMBO Journal. 19 (15): 4015–25. doi:10.1093/emboj/19.15.4015. PMC 306608. PMID 10921882.
Borinstein SC, Hyatt MA, Sykes VW, Straub RE, Lipkowitz S, Boulter J, Bogler O (December 2000). "SETA is a multifunctional adapter protein with three SH3 domains that binds Grb2, Cbl, and the novel SB1 proteins". Cellular Signalling. 12 (11–12): 769–79. doi:10.1016/s0898-6568(00)00129-7. PMID 11152963.
Park RK, Izadi KD, Deo YM, Durden DL (September 1999). "Role of Src in the modulation of multiple adaptor proteins in FcalphaRI oxidant signaling". Blood. 94 (6): 2112–20. doi:10.1182/blood.V94.6.2112. PMID 10477741.
Sakaguchi K, Okabayashi Y, Kasuga M (April 2001). "Shc mediates ligand-induced internalization of epidermal growth factor receptors". Biochemical and Biophysical Research Communications. 282 (5): 1154–60. doi:10.1006/bbrc.2001.4680. PMID 11302736.
Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS (March 2000). "The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain". The EMBO Journal. 19 (6): 1263–71. doi:10.1093/emboj/19.6.1263. PMC 305667. PMID 10716926.
Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (October 1997). "Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells". Biochemical and Biophysical Research Communications. 239 (2): 412–7. doi:10.1006/bbrc.1997.7480. PMID 9344843.
Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T (June 2001). "Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner". Biochemical and Biophysical Research Communications. 284 (2): 470–7. doi:10.1006/bbrc.2001.5004. PMID 11394904.
Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH (December 2000). "Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation". Molecular and Cellular Biology. 20 (24): 9212–24. doi:10.1128/mcb.20.24.9212-9224.2000. PMC 102179. PMID 11094073.
- Colledge M, Froehner SC (May 1998). "Interaction between the nicotinic acetylcholine receptor and Grb2. Implications for signa