トップQs
タイムライン
チャット
視点
多角数
ウィキペディアから
Remove ads
多角数(たかくすう、英: polygonal number)とは、正多角形の形に点を並べたときにそこに含まれる点の総数にあたる自然数である。多角形数ともいう。
例
例えば、10 個の点は
このように正三角形の形に並べることができるので 10 は三角数である。また、16 個の点は
このように正方形の形に並べることができ、16 は四角数(平方数)である。
三角数、四角数、六角数の例を以下に示す。
一般化
要約
視点
0 番目の多角数は全て、形式的に 0 とみなすことができる。
n 番目の p 角数を Pp,n とすると上の図から
となり、したがって Pp,n は等差数列の和
となる。
この式から、2 番目の p 角数は p であり、3 番目の p 角数は 3(p − 1) であることなどが分かる。
なおここで、形式的に「二角数」(p = 2) を考えると、
となり、自然数列そのものになる。これは、点を直線状に並べることに相当する。ただし古代ギリシャの数学者が直線数と呼んでいたのは、矩形に並べられることができないことからである。
Remove ads
性質
数表
Remove ads
関連項目
外部リンク
- Weisstein, Eric W. “Polygonal Number”. mathworld.wolfram.com (英語).
- PolygonalNumbers virtuescience 多角数表
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads