நைட்ரிக் காடி

From Wikipedia, the free encyclopedia

நைட்ரிக் காடி
Remove ads

நைட்ரிக் காடி (HNO3), மிகவும் அரிப்புத்தன்மை கொண்ட, கடுமையான காடிப்புண் உண்டாக்ககூடிய கடுங்காடி. இதனை "வலுவான நீர்" என்னும் பொருளில் அக்வா ஃவார்ட்டிசு (aqua fortis) என்றும் நைட்டர் சாராயம் (spirit of nitre) என்றும் கூறுவதுண்டு.முதன்முதலில் 1650 ஆம் ஆண்டு கிளாபர் இதனைத் தயாரித்தார்.பின்னர் 1784 ஆம் ஆண்டில் கேவண்டிஸ் என்பவர் ஈரங்கலந்த ஆக்சிசன் மற்றும் நைட்ரசன் கலவையை மின்பொறியில் செலுத்தி நைட்ரிக் அமிலம் தயாரிக்கலாம என்று தெரிவித்தார்.

விரைவான உண்மைகள் பெயர்கள், இனங்காட்டிகள் ...

நைட்ரிக் காடி தூய்மையாக இருக்கும் பொழுது நிறமற்றதாக இருக்கும், ஆனால் நாள்பட வைத்திருந்தால் நைட்ரசன் ஆக்சைடு சேர்வதால் மஞ்சளாக இருக்கும். நீர்க் கரைசலில் 86% உக்கும் மேலாக நைட்ரிக் காடி இருக்குமானால் அதனை புகையும் நைட்ரிக் காடி என்பர். இது அதனுள் இருக்கும் நைதரசன் டை-ஆக்சைடின் அளவைப் பொருத்து வெள்ளை புகையும் நைட்ரிக் காடி என்றும் சிவப்பு புகையும் நைட்ரிக் காடி என்றும் அழைப்பதும் உண்டு.

Remove ads

பண்புகள்

நீர்கலவாத தூய நைட்ரிக் காடி (100%) நிறமற்ற நீர்மம். இதன் அடர்த்தி 1522 கிகி/மீ3 (kg/m³) ஆகும். இது -42 °C குளிர்நிலையில் வெண்படிகங்களாக மாறும்; 83 °C கொதிநிலை எய்தும். வெளிச்சம் உடைய இடத்தில் கொதிக்கும் பொழுது பிரிவடைந்து கீழ்க்காணுமாறு நைதரசன் டை-ஆக்சைடு உருவாகுகின்றது:

Thumb
70% நைத்திரிக் அமிலம்
Thumb
நைதரசனீர் ஒக்சைடு கலந்துள்ள நைத்திரிக் அமிலம்.
4HNO3 → 2H2O + 4NO2 + O2 (72 °C)

ஆகவே சிதையாமல் இருக்க நீர்கலவாத நைட்ரிக் காடியை 0 °C வைத்திருக்கவேண்டும். நைதரசன் -டை-ஆக்சைடு (NO2) நைட்ரிக் காடியில் கரைந்திருந்து மஞ்சள் நிறம் தரும்.

Remove ads

இரசாயனத் தாக்கங்கள்

அமில-கார இயல்புகளை வெளிப்படுத்தும் தாக்கங்கள்

பொதுவாக நைத்திரிக் அமிலம் ஒரு வன்னமிலமாகும். ஏனெனில் செறிந்த நைத்திரிக் அமிலத்தால் இலகுவில் தாக்கமடையாத செப்பையும் தாக்கமடையச் செய்ய முடியும். மற்றைய உலோகங்களுடன் உக்கிரமாகத் தாக்கமடையக் கூடியது. உயிரினங்களின் தோலில் பட்டால் மற்றைய வன்னமிலங்கள் எவ்வாறு அர்ப்படையச் செய்யுமோ அவ்வாறே இதுவும் அரிக்கும். எனினும் ஏனைய வன்னமிலங்களோடு இது கலக்கப்பட்டால் இதன் அமில இயல்பு குறைவடைந்து கார இயல்பு வெளிப்படுத்தும். உதாரணமாக சல்பூரிக் அமிலத்தோடு கலக்கப்பட்டால் இதன் கார இயல்பே வெளிப்படுத்தப்படும்.

HNO3 + 2H2SO4 is in equilibrium with NO2+ + H3O+ + 2HSO4; K ~ 22

இது நீர் மற்றும் அமோனியா போல இரசாயன ஈரியல்பைக் கொண்டிருப்பதால், தன்னயனாக்கமடையக் கூடியது.

2HNO3 is in equilibrium with NO2+ + NO3 + H2O

உலோகங்களுடனான தாக்கங்கள்

ஐதாக்கப்பட்ட நைத்திரிக் அமிலம் ஏனைய அமிலங்களைப் போலவே மக்னீசியம், மங்கனீசு, துத்தநாகம் ஆகிய உலோகங்களுடன் தாக்கமடைந்து அவ்வுலோகங்களின் நைத்திரேற்றை உருவாக்கி ஐதரசன் வாயுவை (H2) விடுவிக்கும். ஏனைய உலோகங்களுடன் நைதரசனின் ஒக்சைட்டுகளை விடுவிக்கும்.

மிகவும் தாக்கவீதம் குறைந்த, தாக்கவீதத்தொடரில் அடிமட்டத்திலிருக்கும் செம்பு, வெள்ளி ஆகிய மூலகங்களுடனும் நைத்திரிக் அமிலம் குறித்த நிபந்தனைகள் பூர்த்தியாக்கப்பட்டால் தாக்கமடையக் கூடியது. உதாரணமாக சாதாரண அறைவெப்பநிலையில் செம்பு ஐதான நைத்திரிக் அமிலத்துடன் 3:8 பீசமானத்தில் கலக்கப்பட்டால் நைத்திரிக் அமிலம் செம்புடன் தாக்கமடையத் தொடங்கும். இதன் போது செம்பு அயனாக்கமடைந்து கரைசலில் கரைவதுடன் நிறமற்ற NO வாயு வெளிவிடப்படும்.

3 Cu + 8 HNO3 → 3 Cu2+ + 2 NO + 4 H2O + 6 NO3

செப்பை செறிந்த நைத்திரிக் அமிலத்துடன் 1:4 பீசமானத்தில் சேர்த்தால் கபில நிறமான நைதரசனீர் ஒக்சைடு வெளிவரும்.

Cu + 4 H+ + 2 NO3 → Cu2+ + 2 NO2 + 2 H2O

சில உலோகங்களுடன் தாக்கமடைந்து அவற்றை ஒக்சியேற்றி உலோக ஒக்சைட்டுகளைத் தோற்றுவிக்கும். உதாரணமாக வெள்ளீயம், ஆர்செனிக், அந்திமனி, டைட்டானியம் ஆகிய உலோகங்களுடன் தாக்கமடைந்து முறையே SnO2, As2O5, Sb2O5, TiO2 ஆகிய உலோக ஒக்சைட்டுக்களை உருவாக்கும்.

பொன், பிளாட்டினம் ஆகிய உலோகங்களுடன் நைத்திரிக் அமிலம் தாக்கமடைவதில்லை. 14 கரட்டுக்கும் குறைவான மதிப்புடைய தங்கத்தோடு தாக்கமடையக் கூடியது. எனவே நகைக்கடைகளில் நைத்திரிக் அமிலத்தைப் பயன்படுத்தி மதிப்பு குறைந்த, தூய்மை குறைந்த் தங்கத்தை இலகுவாக இனங்காணலாம். நைத்திரிக் அமிலமும், ஐதரோகுளோரிக் அமிலமும் 1:3 என்ற விகிதத்தில் கலக்கப்பட்ட அக்குவா ரீஜியா என்னும் கரைசல் மிகவும் தாக்குதிறன் கூடிய கரைசலாகும். நைத்திரிக் அமிலத்தாலோ அல்லது ஐதரோகுளோரிக் அமிலத்தாலோ தனியே தூய தங்கத்தைக் கரைக்க முடியாதாயினும், அக்குவா ரீஜியாவில் ஒவ்வொரு அமிலமும் தாக்கத்தின் ஒவ்வொரு செயற்பாடை நிறைவேற்றுவதால் அக்குவா ரீஜியாவால் தங்கம், பிளாட்டினம் ஆகிய இலகுவில் தாக்கமடையாத உலோகங்களையும் கரைக்க முடியும்.

குரோமியம், இரும்பு, அலுமினியம் ஆகியன ஐதான நைத்திரிக் அமிலத்தில் கரைந்து விடுமென்றாலும் (நைத்திரேற்றுக்களை உருவாக்குவதால்), செறிந்த நைத்திரிக் அமிலத்தோடு ஒக்சைட்டை உருவாக்குகின்றன. இவ்வுலோக ஒக்சைட்டு பாதுகாப்புப் படையாகத் தொழிற்படுவதால் செறிந்த நைத்திரிக் அமிலத்தில் தாக்கம் தொடர்ந்து நடைபெறாது.

2 Al + dil. 6 HNO3(aq) → 2 Al3+(aq) + 6 NO-3(aq) + 3 H2

அல்லுலோகங்களுடனான தாக்கங்கள்

அல்லுலோகங்களுடன் நைத்திரிக் அமிலம் வெடித்தலுடன் பயங்கரமாகத் தாக்கமடையக் கூடியது. இது மிகவும் வன்மையான ஒக்சியேற்றி என்பதால் சேதனச் சேர்மங்களை ஒக்சியேற்றக்கூடியது. நைத்திரிக் அமிலத்தை சேதனச் சேர்மங்களோடு தாக்கமடையச் செய்தே டி.என்.டி (TNT-Trinitrotoluene) போன்ற வெடிபொருட்கள் உருவாக்கப்படுகின்றன.

நைத்திரிக் அமிலம் அல்லுலோகங்களை அவற்றின் அதிகூடிய ஒக்சியேற்றும் எண்ணுக்கு ஒக்சியேற்றக்கூடியது. உதாரணமாகக் கார்பனை 0 இலிருந்து +4 ஒக்சியேற்றும் நிலைக்கு ஒக்சியேற்றுகின்றது. இதன் போது NO அல்லது NO2 வாயு வெளியேற்றப்படும்.

C + 4 HNO3 → CO2 + 4 NO2 + 2 H2O

அல்லது

3 C + 4 HNO3 → 3 CO2 + 4 NO + 2 H2O
Remove ads

உற்பத்தி

தொழிற்சாலை உற்பத்தி

அசேதன நைதரசன் பசளை உற்பத்தியில் நைத்திரிக் அமிலம் இடைநிலைப் பொருளாக உள்ளது. நைத்திரேற்றுப் பசளை உற்பத்திக்கு நைத்திரிக் அமிலம் அவசியமாகும். எனவே ஹேபர் செயன்முறை மூலம் உற்பத்தி செய்யப்படும் அமோனியா நைத்திரிக் அமிலமாக மாற்றப்படுகின்றது. இதற்கு ஒஸ்டுவால்டு செயல்முறை பயன்படுத்தப்படுகின்றது.

முதற்படியாக அதிக அமுக்கத்திலும் 500 K வெப்பநிலையிலும் பிளாட்டினம் அல்லது ரோடியம் ஊக்கியைப் பயன்படுத்தி அமோனியா நைத்திரிக் ஒக்சைட்டு வாயுவாக ஒக்சியேற்றப்படும்.

4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g) (ΔH = −905.2 kJ)

பின்னர் வளியில் நைத்திரிக் ஒக்சைடு நைதரசனீர் ஒக்சைடாக ஒக்சிசனால் ஒக்சியேற்றப்படும்.

2 NO (g) + O2 (g) → 2 NO2 (g) (ΔH = −114 kJ/mol)

நைதரசனீரொக்சைடு பின்னர் நீரால் அகத்துறிஞ்சப்பட்டு நைத்திரிக் அமிலமும் நைத்திரிக் ஒக்சைடும் உருவாகின்றது. உருவாகும் நைத்திரிக் ஒக்சைடை மீளப்பயன்படுத்தலாம்.

3 NO2 (g) + H2O (l) → 2 HNO3 (aq) + NO (g) (ΔH = −117 kJ/mol)

மேலுள்ள படிக்குப் பதிலாக வளியில் இத்தாக்கத்தை நிகழ்த்தினால் முழுமையாக நைத்திரிக் அமிலத்தை உருவாக்கலாம்:

4 NO2 (g) + O2 (g) + 2 H2O (l) → 4 HNO3 (aq)

ஆராய்ச்சிகூட உற்பத்தி

ஆராய்ச்சிகூடத்தில் கியூப்பிரிக் நைத்திரேற்றைச் சூடாக்கிப் பிரிகையடையச் செய்வதன் மூலம் நைதரசனீர் ஒக்சைடை உருவாக்கி அதனை நீரால் உறிஞ்சி நைத்திரிக் அமிலத்தை உற்பத்தி செய்யலாம்.

2 Cu(NO3)2 → 2 CuO(s) + 4 NO2(g) + O2(g)

இல்லாவிட்டால் எந்தவொரு உலோக நைத்திரேற்றையும் 96% சல்பூரிக் அமிலத்துடன் கலப்பதனால் நேரடியாக நைத்திரிக் அமிலத்தை உருவாக்கலாம்.

2 NaNO3 + H2SO4 → 2 HNO3 + Na2SO4

பாதுகாப்பு நடைமுறைகள்

Thumb நைத்திரிக் அமிலம் வன்னமிலம் என்பதாலும், வலிமையான ஒக்சியேற்றி என்பதாலும் இதனைக் கையாளும் போது அவதானமாகச் செயற்பட வேண்டும். உயிர்க் கலங்களில் பட்டால் அரிப்பை ஏற்படுத்திக் கலங்களைக் கொன்று விடும். உயிர்க்கலங்களிலுள்ள புரத மற்றும் இலிப்பிட்டுக் கூறுகளை நீரேற்றல் மூலம் பிரிகையடையச் செய்யும். எனவே இது மிகவும் ஆபத்தான வன்னமிலமாகும். சேதனச் சேர்மங்களுடன் மிக ஆபத்தான முறையில் வெடித்தலுடன் தாக்கமடைவதால் இதனை சேதனச் சேர்மங்களுக்கு அருகில் வைக்கக் கூடாது. பொதுவாக நைத்திரிக் அமிலம் ஆய்வுகூடங்களில் சேதனச் சேர்மங்களிலிருந்தும் காரங்களிலிருந்தும் சேய்மையில் பாதுகாப்பாக வைக்கப்படுகின்றது. தோலில் நைத்திரிக் அமிலம் பட்டால் தாக்கப்பட்ட தோற்பகுதியை 10-15 நிமிடங்களுக்கு ஓடும் நீரில் கழுவ வேண்டும்.

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads